OpenOCD
cortex_a.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2005 by Dominic Rath *
5  * Dominic.Rath@gmx.de *
6  * *
7  * Copyright (C) 2006 by Magnus Lundin *
8  * lundin@mlu.mine.nu *
9  * *
10  * Copyright (C) 2008 by Spencer Oliver *
11  * spen@spen-soft.co.uk *
12  * *
13  * Copyright (C) 2009 by Dirk Behme *
14  * dirk.behme@gmail.com - copy from cortex_m3 *
15  * *
16  * Copyright (C) 2010 Øyvind Harboe *
17  * oyvind.harboe@zylin.com *
18  * *
19  * Copyright (C) ST-Ericsson SA 2011 *
20  * michel.jaouen@stericsson.com : smp minimum support *
21  * *
22  * Copyright (C) Broadcom 2012 *
23  * ehunter@broadcom.com : Cortex-R4 support *
24  * *
25  * Copyright (C) 2013 Kamal Dasu *
26  * kdasu.kdev@gmail.com *
27  * *
28  * Copyright (C) 2016 Chengyu Zheng *
29  * chengyu.zheng@polimi.it : watchpoint support *
30  * *
31  * Cortex-A8(tm) TRM, ARM DDI 0344H *
32  * Cortex-A9(tm) TRM, ARM DDI 0407F *
33  * Cortex-A4(tm) TRM, ARM DDI 0363E *
34  * Cortex-A15(tm)TRM, ARM DDI 0438C *
35  * *
36  ***************************************************************************/
37 
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41 
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/nvp.h>
56 #include <helper/time_support.h>
57 
58 static int cortex_a_poll(struct target *target);
59 static int cortex_a_debug_entry(struct target *target);
60 static int cortex_a_restore_context(struct target *target, bool bpwp);
61 static int cortex_a_set_breakpoint(struct target *target,
62  struct breakpoint *breakpoint, uint8_t matchmode);
64  struct breakpoint *breakpoint, uint8_t matchmode);
66  struct breakpoint *breakpoint);
67 static int cortex_a_unset_breakpoint(struct target *target,
68  struct breakpoint *breakpoint);
69 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
70  uint32_t value, uint32_t *dscr);
71 static int cortex_a_mmu(struct target *target, bool *enabled);
72 static int cortex_a_mmu_modify(struct target *target, bool enable);
73 static int cortex_a_virt2phys(struct target *target,
74  target_addr_t virt, target_addr_t *phys);
75 static int cortex_a_read_cpu_memory(struct target *target,
76  uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
77 
78 static unsigned int ilog2(unsigned int x)
79 {
80  unsigned int y = 0;
81  x /= 2;
82  while (x) {
83  ++y;
84  x /= 2;
85  }
86  return y;
87 }
88 
89 /* restore cp15_control_reg at resume */
91 {
92  int retval = ERROR_OK;
93  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
94  struct armv7a_common *armv7a = target_to_armv7a(target);
95 
96  if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
97  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
98  /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
99  retval = armv7a->arm.mcr(target, 15,
100  0, 0, /* op1, op2 */
101  1, 0, /* CRn, CRm */
102  cortex_a->cp15_control_reg);
103  }
104  return retval;
105 }
106 
107 /*
108  * Set up ARM core for memory access.
109  * If !phys_access, switch to SVC mode and make sure MMU is on
110  * If phys_access, switch off mmu
111  */
112 static int cortex_a_prep_memaccess(struct target *target, bool phys_access)
113 {
114  struct armv7a_common *armv7a = target_to_armv7a(target);
115  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
116  bool mmu_enabled = false;
117 
118  if (!phys_access) {
120  cortex_a_mmu(target, &mmu_enabled);
121  if (mmu_enabled)
123  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
124  /* overwrite DACR to all-manager */
125  armv7a->arm.mcr(target, 15,
126  0, 0, 3, 0,
127  0xFFFFFFFF);
128  }
129  } else {
130  cortex_a_mmu(target, &mmu_enabled);
131  if (mmu_enabled)
132  cortex_a_mmu_modify(target, false);
133  }
134  return ERROR_OK;
135 }
136 
137 /*
138  * Restore ARM core after memory access.
139  * If !phys_access, switch to previous mode
140  * If phys_access, restore MMU setting
141  */
142 static int cortex_a_post_memaccess(struct target *target, bool phys_access)
143 {
144  struct armv7a_common *armv7a = target_to_armv7a(target);
145  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
146 
147  if (!phys_access) {
148  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
149  /* restore */
150  armv7a->arm.mcr(target, 15,
151  0, 0, 3, 0,
152  cortex_a->cp15_dacr_reg);
153  }
155  } else {
156  bool mmu_enabled = false;
157  cortex_a_mmu(target, &mmu_enabled);
158  if (mmu_enabled)
160  }
161  return ERROR_OK;
162 }
163 
164 
165 /* modify cp15_control_reg in order to enable or disable mmu for :
166  * - virt2phys address conversion
167  * - read or write memory in phys or virt address */
168 static int cortex_a_mmu_modify(struct target *target, bool enable)
169 {
170  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
171  struct armv7a_common *armv7a = target_to_armv7a(target);
172  int retval = ERROR_OK;
173  bool need_write = false;
174 
175  if (enable) {
176  /* if mmu enabled at target stop and mmu not enable */
177  if (!(cortex_a->cp15_control_reg & 0x1U)) {
178  LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
179  return ERROR_FAIL;
180  }
181  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
182  cortex_a->cp15_control_reg_curr |= 0x1U;
183  need_write = true;
184  }
185  } else {
186  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
187  cortex_a->cp15_control_reg_curr &= ~0x1U;
188  need_write = true;
189  }
190  }
191 
192  if (need_write) {
193  LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
194  enable ? "enable mmu" : "disable mmu",
195  cortex_a->cp15_control_reg_curr);
196 
197  retval = armv7a->arm.mcr(target, 15,
198  0, 0, /* op1, op2 */
199  1, 0, /* CRn, CRm */
200  cortex_a->cp15_control_reg_curr);
201  }
202  return retval;
203 }
204 
205 /*
206  * Cortex-A Basic debug access, very low level assumes state is saved
207  */
209 {
210  struct armv7a_common *armv7a = target_to_armv7a(target);
211  uint32_t dscr;
212  int retval;
213 
214  /* lock memory-mapped access to debug registers to prevent
215  * software interference */
216  retval = mem_ap_write_u32(armv7a->debug_ap,
217  armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
218  if (retval != ERROR_OK)
219  return retval;
220 
221  /* Disable cacheline fills and force cache write-through in debug state */
222  retval = mem_ap_write_u32(armv7a->debug_ap,
223  armv7a->debug_base + CPUDBG_DSCCR, 0);
224  if (retval != ERROR_OK)
225  return retval;
226 
227  /* Disable TLB lookup and refill/eviction in debug state */
228  retval = mem_ap_write_u32(armv7a->debug_ap,
229  armv7a->debug_base + CPUDBG_DSMCR, 0);
230  if (retval != ERROR_OK)
231  return retval;
232 
233  retval = dap_run(armv7a->debug_ap->dap);
234  if (retval != ERROR_OK)
235  return retval;
236 
237  /* Enabling of instruction execution in debug mode is done in debug_entry code */
238 
239  /* Resync breakpoint registers */
240 
241  /* Enable halt for breakpoint, watchpoint and vector catch */
242  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243  armv7a->debug_base + CPUDBG_DSCR, &dscr);
244  if (retval != ERROR_OK)
245  return retval;
246  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
247  armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
248  if (retval != ERROR_OK)
249  return retval;
250 
251  /* Since this is likely called from init or reset, update target state information*/
252  return cortex_a_poll(target);
253 }
254 
255 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
256 {
257  /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
258  * Writes final value of DSCR into *dscr. Pass force to force always
259  * reading DSCR at least once. */
260  struct armv7a_common *armv7a = target_to_armv7a(target);
261  int retval;
262 
263  if (force) {
264  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
265  armv7a->debug_base + CPUDBG_DSCR, dscr);
266  if (retval != ERROR_OK) {
267  LOG_ERROR("Could not read DSCR register");
268  return retval;
269  }
270  }
271 
273  if (retval != ERROR_OK)
274  LOG_ERROR("Error waiting for InstrCompl=1");
275  return retval;
276 }
277 
278 /* To reduce needless round-trips, pass in a pointer to the current
279  * DSCR value. Initialize it to zero if you just need to know the
280  * value on return from this function; or DSCR_INSTR_COMP if you
281  * happen to know that no instruction is pending.
282  */
283 static int cortex_a_exec_opcode(struct target *target,
284  uint32_t opcode, uint32_t *dscr_p)
285 {
286  uint32_t dscr;
287  int retval;
288  struct armv7a_common *armv7a = target_to_armv7a(target);
289 
290  dscr = dscr_p ? *dscr_p : 0;
291 
292  LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
293 
294  /* Wait for InstrCompl bit to be set */
295  retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
296  if (retval != ERROR_OK)
297  return retval;
298 
299  retval = mem_ap_write_u32(armv7a->debug_ap,
300  armv7a->debug_base + CPUDBG_ITR, opcode);
301  if (retval != ERROR_OK)
302  return retval;
303 
304  /* Wait for InstrCompl bit to be set */
305  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
306  if (retval != ERROR_OK) {
307  LOG_ERROR("Error waiting for cortex_a_exec_opcode");
308  return retval;
309  }
310 
311  if (dscr_p)
312  *dscr_p = dscr;
313 
314  return retval;
315 }
316 
317 /*
318  * Cortex-A implementation of Debug Programmer's Model
319  *
320  * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
321  * so there's no need to poll for it before executing an instruction.
322  *
323  * NOTE that in several of these cases the "stall" mode might be useful.
324  * It'd let us queue a few operations together... prepare/finish might
325  * be the places to enable/disable that mode.
326  */
327 
328 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
329 {
330  return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
331 }
332 
333 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
334 {
335  LOG_DEBUG("write DCC 0x%08" PRIx32, data);
338 }
339 
340 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
341  uint32_t *dscr_p)
342 {
343  uint32_t dscr = DSCR_INSTR_COMP;
344  int retval;
345 
346  if (dscr_p)
347  dscr = *dscr_p;
348 
349  /* Wait for DTRRXfull */
352  if (retval != ERROR_OK) {
353  LOG_ERROR("Error waiting for read dcc");
354  return retval;
355  }
356 
359  if (retval != ERROR_OK)
360  return retval;
361  /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
362 
363  if (dscr_p)
364  *dscr_p = dscr;
365 
366  return retval;
367 }
368 
369 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
370 {
371  struct cortex_a_common *a = dpm_to_a(dpm);
372  uint32_t dscr;
373  int retval;
374 
375  /* set up invariant: INSTR_COMP is set after ever DPM operation */
376  retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
377  if (retval != ERROR_OK) {
378  LOG_ERROR("Error waiting for dpm prepare");
379  return retval;
380  }
381 
382  /* this "should never happen" ... */
383  if (dscr & DSCR_DTR_RX_FULL) {
384  LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
385  /* Clear DCCRX */
386  retval = cortex_a_exec_opcode(
388  ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
389  &dscr);
390  if (retval != ERROR_OK)
391  return retval;
392  }
393 
394  return retval;
395 }
396 
397 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
398 {
399  /* REVISIT what could be done here? */
400  return ERROR_OK;
401 }
402 
403 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
404  uint32_t opcode, uint32_t data)
405 {
406  struct cortex_a_common *a = dpm_to_a(dpm);
407  int retval;
408  uint32_t dscr = DSCR_INSTR_COMP;
409 
410  retval = cortex_a_write_dcc(a, data);
411  if (retval != ERROR_OK)
412  return retval;
413 
414  return cortex_a_exec_opcode(
416  opcode,
417  &dscr);
418 }
419 
421  uint8_t rt, uint32_t data)
422 {
423  struct cortex_a_common *a = dpm_to_a(dpm);
424  uint32_t dscr = DSCR_INSTR_COMP;
425  int retval;
426 
427  if (rt > 15)
428  return ERROR_TARGET_INVALID;
429 
430  retval = cortex_a_write_dcc(a, data);
431  if (retval != ERROR_OK)
432  return retval;
433 
434  /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
435  return cortex_a_exec_opcode(
437  ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
438  &dscr);
439 }
440 
441 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
442  uint32_t opcode, uint32_t data)
443 {
444  struct cortex_a_common *a = dpm_to_a(dpm);
445  uint32_t dscr = DSCR_INSTR_COMP;
446  int retval;
447 
448  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
449  if (retval != ERROR_OK)
450  return retval;
451 
452  /* then the opcode, taking data from R0 */
453  retval = cortex_a_exec_opcode(
455  opcode,
456  &dscr);
457 
458  return retval;
459 }
460 
462  uint32_t opcode, uint64_t data)
463 {
464  struct cortex_a_common *a = dpm_to_a(dpm);
465  uint32_t dscr = DSCR_INSTR_COMP;
466  int retval;
467 
468  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data & 0xffffffffULL);
469  if (retval != ERROR_OK)
470  return retval;
471 
472  retval = cortex_a_instr_write_data_rt_dcc(dpm, 1, data >> 32);
473  if (retval != ERROR_OK)
474  return retval;
475 
476  /* then the opcode, taking data from R0, R1 */
478  opcode,
479  &dscr);
480  return retval;
481 }
482 
483 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
484 {
485  struct target *target = dpm->arm->target;
486  uint32_t dscr = DSCR_INSTR_COMP;
487 
488  /* "Prefetch flush" after modifying execution status in CPSR */
490  ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
491  &dscr);
492 }
493 
494 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
495  uint32_t opcode, uint32_t *data)
496 {
497  struct cortex_a_common *a = dpm_to_a(dpm);
498  int retval;
499  uint32_t dscr = DSCR_INSTR_COMP;
500 
501  /* the opcode, writing data to DCC */
502  retval = cortex_a_exec_opcode(
504  opcode,
505  &dscr);
506  if (retval != ERROR_OK)
507  return retval;
508 
509  return cortex_a_read_dcc(a, data, &dscr);
510 }
511 
513  uint8_t rt, uint32_t *data)
514 {
515  struct cortex_a_common *a = dpm_to_a(dpm);
516  uint32_t dscr = DSCR_INSTR_COMP;
517  int retval;
518 
519  if (rt > 15)
520  return ERROR_TARGET_INVALID;
521 
522  retval = cortex_a_exec_opcode(
524  ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
525  &dscr);
526  if (retval != ERROR_OK)
527  return retval;
528 
529  return cortex_a_read_dcc(a, data, &dscr);
530 }
531 
532 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
533  uint32_t opcode, uint32_t *data)
534 {
535  struct cortex_a_common *a = dpm_to_a(dpm);
536  uint32_t dscr = DSCR_INSTR_COMP;
537  int retval;
538 
539  /* the opcode, writing data to R0 */
540  retval = cortex_a_exec_opcode(
542  opcode,
543  &dscr);
544  if (retval != ERROR_OK)
545  return retval;
546 
547  /* write R0 to DCC */
548  return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
549 }
550 
552  uint32_t opcode, uint64_t *data)
553 {
554  uint32_t lo, hi;
555  int retval;
556 
557  /* the opcode, writing data to RO, R1 */
558  retval = cortex_a_instr_read_data_r0(dpm, opcode, &lo);
559  if (retval != ERROR_OK)
560  return retval;
561 
562  *data = lo;
563 
564  /* write R1 to DCC */
565  retval = cortex_a_instr_read_data_rt_dcc(dpm, 1, &hi);
566  if (retval != ERROR_OK)
567  return retval;
568 
569  *data |= (uint64_t)hi << 32;
570 
571  return retval;
572 }
573 
574 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t,
575  uint32_t addr, uint32_t control)
576 {
577  struct cortex_a_common *a = dpm_to_a(dpm);
578  uint32_t vr = a->armv7a_common.debug_base;
579  uint32_t cr = a->armv7a_common.debug_base;
580  int retval;
581 
582  switch (index_t) {
583  case 0 ... 15: /* breakpoints */
584  vr += CPUDBG_BVR_BASE;
585  cr += CPUDBG_BCR_BASE;
586  break;
587  case 16 ... 31: /* watchpoints */
588  vr += CPUDBG_WVR_BASE;
589  cr += CPUDBG_WCR_BASE;
590  index_t -= 16;
591  break;
592  default:
593  return ERROR_FAIL;
594  }
595  vr += 4 * index_t;
596  cr += 4 * index_t;
597 
598  LOG_DEBUG("A: bpwp enable, vr %08" PRIx32 " cr %08" PRIx32, vr, cr);
599 
601  vr, addr);
602  if (retval != ERROR_OK)
603  return retval;
605  cr, control);
606  return retval;
607 }
608 
609 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
610 {
611  struct cortex_a_common *a = dpm_to_a(dpm);
612  uint32_t cr;
613 
614  switch (index_t) {
615  case 0 ... 15:
617  break;
618  case 16 ... 31:
620  index_t -= 16;
621  break;
622  default:
623  return ERROR_FAIL;
624  }
625  cr += 4 * index_t;
626 
627  LOG_DEBUG("A: bpwp disable, cr %08" PRIx32, cr);
628 
629  /* clear control register */
631 }
632 
633 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
634 {
635  struct arm_dpm *dpm = &a->armv7a_common.dpm;
636  int retval;
637 
638  dpm->arm = &a->armv7a_common.arm;
639  dpm->didr = didr;
640 
643 
648 
652 
655 
656  retval = arm_dpm_setup(dpm);
657  if (retval == ERROR_OK)
658  retval = arm_dpm_initialize(dpm);
659 
660  return retval;
661 }
662 static struct target *get_cortex_a(struct target *target, int32_t coreid)
663 {
664  struct target_list *head;
665 
667  struct target *curr = head->target;
668  if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
669  return curr;
670  }
671  return target;
672 }
673 static int cortex_a_halt(struct target *target);
674 
675 static int cortex_a_halt_smp(struct target *target)
676 {
677  int retval = 0;
678  struct target_list *head;
679 
681  struct target *curr = head->target;
682  if ((curr != target) && (curr->state != TARGET_HALTED)
683  && target_was_examined(curr))
684  retval += cortex_a_halt(curr);
685  }
686  return retval;
687 }
688 
689 static int update_halt_gdb(struct target *target)
690 {
691  struct target *gdb_target = NULL;
692  struct target_list *head;
693  struct target *curr;
694  int retval = 0;
695 
696  if (target->gdb_service && target->gdb_service->core[0] == -1) {
699  retval += cortex_a_halt_smp(target);
700  }
701 
702  if (target->gdb_service)
703  gdb_target = target->gdb_service->target;
704 
706  curr = head->target;
707  /* skip calling context */
708  if (curr == target)
709  continue;
710  if (!target_was_examined(curr))
711  continue;
712  /* skip targets that were already halted */
713  if (curr->state == TARGET_HALTED)
714  continue;
715  /* Skip gdb_target; it alerts GDB so has to be polled as last one */
716  if (curr == gdb_target)
717  continue;
718 
719  /* avoid recursion in cortex_a_poll() */
720  curr->smp = 0;
721  cortex_a_poll(curr);
722  curr->smp = 1;
723  }
724 
725  /* after all targets were updated, poll the gdb serving target */
726  if (gdb_target && gdb_target != target)
727  cortex_a_poll(gdb_target);
728  return retval;
729 }
730 
731 /*
732  * Cortex-A Run control
733  */
734 
735 static int cortex_a_poll(struct target *target)
736 {
737  int retval = ERROR_OK;
738  uint32_t dscr;
739  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
740  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
741  enum target_state prev_target_state = target->state;
742  /* toggle to another core is done by gdb as follow */
743  /* maint packet J core_id */
744  /* continue */
745  /* the next polling trigger an halt event sent to gdb */
746  if ((target->state == TARGET_HALTED) && (target->smp) &&
747  (target->gdb_service) &&
748  (!target->gdb_service->target)) {
752  return retval;
753  }
754  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
755  armv7a->debug_base + CPUDBG_DSCR, &dscr);
756  if (retval != ERROR_OK)
757  return retval;
758  cortex_a->cpudbg_dscr = dscr;
759 
761  if (prev_target_state != TARGET_HALTED) {
762  /* We have a halting debug event */
763  LOG_DEBUG("Target halted");
765 
766  retval = cortex_a_debug_entry(target);
767  if (retval != ERROR_OK)
768  return retval;
769 
770  if (target->smp) {
771  retval = update_halt_gdb(target);
772  if (retval != ERROR_OK)
773  return retval;
774  }
775 
776  if (prev_target_state == TARGET_DEBUG_RUNNING) {
778  } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
779  if (arm_semihosting(target, &retval) != 0)
780  return retval;
781 
784  }
785  }
786  } else
788 
789  return retval;
790 }
791 
792 static int cortex_a_halt(struct target *target)
793 {
794  int retval;
795  uint32_t dscr;
796  struct armv7a_common *armv7a = target_to_armv7a(target);
797 
798  /*
799  * Tell the core to be halted by writing DRCR with 0x1
800  * and then wait for the core to be halted.
801  */
802  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
803  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
804  if (retval != ERROR_OK)
805  return retval;
806 
807  dscr = 0; /* force read of dscr */
809  DSCR_CORE_HALTED, &dscr);
810  if (retval != ERROR_OK) {
811  LOG_ERROR("Error waiting for halt");
812  return retval;
813  }
814 
816 
817  return ERROR_OK;
818 }
819 
820 static int cortex_a_internal_restore(struct target *target, bool current,
821  target_addr_t *address, bool handle_breakpoints, bool debug_execution)
822 {
823  struct armv7a_common *armv7a = target_to_armv7a(target);
824  struct arm *arm = &armv7a->arm;
825  int retval;
826  uint32_t resume_pc;
827 
828  if (!debug_execution)
830 
831 #if 0
832  if (debug_execution) {
833  /* Disable interrupts */
834  /* We disable interrupts in the PRIMASK register instead of
835  * masking with C_MASKINTS,
836  * This is probably the same issue as Cortex-M3 Errata 377493:
837  * C_MASKINTS in parallel with disabled interrupts can cause
838  * local faults to not be taken. */
839  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
840  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
841  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
842 
843  /* Make sure we are in Thumb mode */
844  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0, 32,
845  buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0,
846  32) | (1 << 24));
847  armv7m->core_cache->reg_list[ARMV7M_XPSR].dirty = true;
848  armv7m->core_cache->reg_list[ARMV7M_XPSR].valid = true;
849  }
850 #endif
851 
852  /* current = true: continue on current pc, otherwise continue at <address> */
853  resume_pc = buf_get_u32(arm->pc->value, 0, 32);
854  if (!current)
855  resume_pc = *address;
856  else
857  *address = resume_pc;
858 
859  /* Make sure that the Armv7 gdb thumb fixups does not
860  * kill the return address
861  */
862  switch (arm->core_state) {
863  case ARM_STATE_ARM:
864  resume_pc &= 0xFFFFFFFC;
865  break;
866  case ARM_STATE_THUMB:
867  case ARM_STATE_THUMB_EE:
868  /* When the return address is loaded into PC
869  * bit 0 must be 1 to stay in Thumb state
870  */
871  resume_pc |= 0x1;
872  break;
873  case ARM_STATE_JAZELLE:
874  LOG_ERROR("How do I resume into Jazelle state??");
875  return ERROR_FAIL;
876  case ARM_STATE_AARCH64:
877  LOG_ERROR("Shouldn't be in AARCH64 state");
878  return ERROR_FAIL;
879  }
880  LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
881  buf_set_u32(arm->pc->value, 0, 32, resume_pc);
882  arm->pc->dirty = true;
883  arm->pc->valid = true;
884 
885  /* restore dpm_mode at system halt */
887  /* called it now before restoring context because it uses cpu
888  * register r0 for restoring cp15 control register */
890  if (retval != ERROR_OK)
891  return retval;
892  retval = cortex_a_restore_context(target, handle_breakpoints);
893  if (retval != ERROR_OK)
894  return retval;
897 
898  /* registers are now invalid */
900 
901 #if 0
902  /* the front-end may request us not to handle breakpoints */
903  if (handle_breakpoints) {
904  /* Single step past breakpoint at current address */
905  breakpoint = breakpoint_find(target, resume_pc);
906  if (breakpoint) {
907  LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
908  cortex_m3_unset_breakpoint(target, breakpoint);
909  cortex_m3_single_step_core(target);
910  cortex_m3_set_breakpoint(target, breakpoint);
911  }
912  }
913 
914 #endif
915  return retval;
916 }
917 
919 {
920  struct armv7a_common *armv7a = target_to_armv7a(target);
921  struct arm *arm = &armv7a->arm;
922  int retval;
923  uint32_t dscr;
924  /*
925  * * Restart core and wait for it to be started. Clear ITRen and sticky
926  * * exception flags: see ARMv7 ARM, C5.9.
927  *
928  * REVISIT: for single stepping, we probably want to
929  * disable IRQs by default, with optional override...
930  */
931 
932  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
933  armv7a->debug_base + CPUDBG_DSCR, &dscr);
934  if (retval != ERROR_OK)
935  return retval;
936 
937  if ((dscr & DSCR_INSTR_COMP) == 0)
938  LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
939 
940  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
941  armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
942  if (retval != ERROR_OK)
943  return retval;
944 
945  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
946  armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
948  if (retval != ERROR_OK)
949  return retval;
950 
951  dscr = 0; /* force read of dscr */
953  DSCR_CORE_RESTARTED, &dscr);
954  if (retval != ERROR_OK) {
955  LOG_ERROR("Error waiting for resume");
956  return retval;
957  }
958 
961 
962  /* registers are now invalid */
964 
965  return ERROR_OK;
966 }
967 
968 static int cortex_a_restore_smp(struct target *target, bool handle_breakpoints)
969 {
970  int retval = 0;
971  struct target_list *head;
973 
975  struct target *curr = head->target;
976  if ((curr != target) && (curr->state != TARGET_RUNNING)
977  && target_was_examined(curr)) {
978  /* resume current address , not in step mode */
979  retval += cortex_a_internal_restore(curr, true, &address,
980  handle_breakpoints, false);
981  retval += cortex_a_internal_restart(curr);
982  }
983  }
984  return retval;
985 }
986 
987 static int cortex_a_resume(struct target *target, bool current,
988  target_addr_t address, bool handle_breakpoints, bool debug_execution)
989 {
990  int retval = 0;
991  /* dummy resume for smp toggle in order to reduce gdb impact */
992  if ((target->smp) && (target->gdb_service->core[1] != -1)) {
993  /* simulate a start and halt of target */
996  /* fake resume at next poll we play the target core[1], see poll*/
998  return 0;
999  }
1000  cortex_a_internal_restore(target, current, &address, handle_breakpoints,
1001  debug_execution);
1002  if (target->smp) {
1003  target->gdb_service->core[0] = -1;
1004  retval = cortex_a_restore_smp(target, handle_breakpoints);
1005  if (retval != ERROR_OK)
1006  return retval;
1007  }
1009 
1010  if (!debug_execution) {
1013  LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1014  } else {
1017  LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1018  }
1019 
1020  return ERROR_OK;
1021 }
1022 
1024 {
1025  uint32_t dscr;
1026  int retval = ERROR_OK;
1027  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1028  struct armv7a_common *armv7a = target_to_armv7a(target);
1029  struct arm *arm = &armv7a->arm;
1030 
1031  LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1032 
1033  /* REVISIT surely we should not re-read DSCR !! */
1034  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1035  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1036  if (retval != ERROR_OK)
1037  return retval;
1038 
1039  /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1040  * imprecise data aborts get discarded by issuing a Data
1041  * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1042  */
1043 
1044  /* Enable the ITR execution once we are in debug mode */
1045  dscr |= DSCR_ITR_EN;
1046  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1047  armv7a->debug_base + CPUDBG_DSCR, dscr);
1048  if (retval != ERROR_OK)
1049  return retval;
1050 
1051  /* Examine debug reason */
1052  arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1053 
1054  /* save address of instruction that triggered the watchpoint? */
1056  uint32_t wfar;
1057 
1058  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1059  armv7a->debug_base + CPUDBG_WFAR,
1060  &wfar);
1061  if (retval != ERROR_OK)
1062  return retval;
1063  arm_dpm_report_wfar(&armv7a->dpm, wfar);
1064  }
1065 
1066  /* First load register accessible through core debug port */
1067  retval = arm_dpm_read_current_registers(&armv7a->dpm);
1068  if (retval != ERROR_OK)
1069  return retval;
1070 
1071  if (arm->spsr) {
1072  /* read SPSR */
1073  retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1074  if (retval != ERROR_OK)
1075  return retval;
1076  }
1077 
1078 #if 0
1079 /* TODO, Move this */
1080  uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1081  cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1082  LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1083 
1084  cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1085  LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1086 
1087  cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1088  LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1089 #endif
1090 
1091  /* Are we in an exception handler */
1092 /* armv4_5->exception_number = 0; */
1093  if (armv7a->post_debug_entry) {
1094  retval = armv7a->post_debug_entry(target);
1095  if (retval != ERROR_OK)
1096  return retval;
1097  }
1098 
1099  return retval;
1100 }
1101 
1103 {
1104  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1105  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1106  int retval;
1107 
1108  /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1109  retval = armv7a->arm.mrc(target, 15,
1110  0, 0, /* op1, op2 */
1111  1, 0, /* CRn, CRm */
1112  &cortex_a->cp15_control_reg);
1113  if (retval != ERROR_OK)
1114  return retval;
1115  LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1116  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1117 
1118  if (!armv7a->is_armv7r)
1120 
1121  if (!armv7a->armv7a_mmu.armv7a_cache.info_valid)
1123 
1124  if (armv7a->is_armv7r) {
1125  armv7a->armv7a_mmu.mmu_enabled = false;
1126  } else {
1127  armv7a->armv7a_mmu.mmu_enabled = cortex_a->cp15_control_reg & 0x1U;
1128  }
1130  cortex_a->cp15_control_reg & 0x4U;
1132  cortex_a->cp15_control_reg & 0x1000U;
1133  cortex_a->curr_mode = armv7a->arm.core_mode;
1134 
1135  /* switch to SVC mode to read DACR */
1136  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1137  armv7a->arm.mrc(target, 15,
1138  0, 0, 3, 0,
1139  &cortex_a->cp15_dacr_reg);
1140 
1141  LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1142  cortex_a->cp15_dacr_reg);
1143 
1144  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1145  return ERROR_OK;
1146 }
1147 
1149  unsigned long bit_mask, unsigned long value)
1150 {
1151  struct armv7a_common *armv7a = target_to_armv7a(target);
1152  uint32_t dscr;
1153 
1154  /* Read DSCR */
1155  int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1156  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1157  if (retval != ERROR_OK)
1158  return retval;
1159 
1160  /* clear bitfield */
1161  dscr &= ~bit_mask;
1162  /* put new value */
1163  dscr |= value & bit_mask;
1164 
1165  /* write new DSCR */
1166  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1167  armv7a->debug_base + CPUDBG_DSCR, dscr);
1168  return retval;
1169 }
1170 
1171 /*
1172  * Single-step on ARMv7a/r is implemented through a HW breakpoint that hits
1173  * every instruction at any address except the address of the current
1174  * instruction.
1175  * Such HW breakpoint is never hit in case of a single instruction that jumps
1176  * on itself (infinite loop), or a WFI or a WFE. In this case, halt the CPU
1177  * after a timeout.
1178  * The jump on itself would be executed several times before the timeout forces
1179  * the halt, but this is not an issue. In ARMv7a/r there are few "pathological"
1180  * instructions, listed below, that jumps on itself and that can have side
1181  * effects if executed more than once; but they are not considered as real use
1182  * cases generated by a compiler.
1183  * Some example:
1184  * - 'pop {pc}' or multi register 'pop' including PC, when the new PC value is
1185  * the same value of current PC. The single step will not stop at the first
1186  * 'pop' and will continue taking values from the stack, modifying SP at each
1187  * iteration.
1188  * - 'rfeda', 'rfedb', 'rfeia', 'rfeib', when the new PC value is the same
1189  * value of current PC. The register provided to the instruction (usually SP)
1190  * will be incremented or decremented at each iteration.
1191  *
1192  * TODO: fix exit in case of error, cleaning HW breakpoints.
1193  */
1194 static int cortex_a_step(struct target *target, bool current, target_addr_t address,
1195  bool handle_breakpoints)
1196 {
1197  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1198  struct armv7a_common *armv7a = target_to_armv7a(target);
1199  struct arm *arm = &armv7a->arm;
1200  struct breakpoint *breakpoint = NULL;
1201  struct breakpoint stepbreakpoint;
1202  struct reg *r;
1203  int retval;
1204 
1205  if (target->state != TARGET_HALTED) {
1206  LOG_TARGET_ERROR(target, "not halted");
1207  return ERROR_TARGET_NOT_HALTED;
1208  }
1209 
1210  /* current = true: continue on current pc, otherwise continue at <address> */
1211  r = arm->pc;
1212  if (!current)
1213  buf_set_u32(r->value, 0, 32, address);
1214  else
1215  address = buf_get_u32(r->value, 0, 32);
1216 
1217  /* The front-end may request us not to handle breakpoints.
1218  * But since Cortex-A uses breakpoint for single step,
1219  * we MUST handle breakpoints.
1220  */
1221  handle_breakpoints = true;
1222  if (handle_breakpoints) {
1224  if (breakpoint)
1226  }
1227 
1228  /* Setup single step breakpoint */
1229  stepbreakpoint.address = address;
1230  stepbreakpoint.asid = 0;
1231  stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1232  ? 2 : 4;
1233  stepbreakpoint.type = BKPT_HARD;
1234  stepbreakpoint.is_set = false;
1235 
1236  /* Disable interrupts during single step if requested */
1237  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1239  if (retval != ERROR_OK)
1240  return retval;
1241  }
1242 
1243  /* Break on IVA mismatch */
1244  cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1245 
1247 
1248  retval = cortex_a_resume(target, true, address, false, false);
1249  if (retval != ERROR_OK)
1250  return retval;
1251 
1252  // poll at least once before starting the timeout
1253  retval = cortex_a_poll(target);
1254  if (retval != ERROR_OK)
1255  return retval;
1256 
1257  int64_t then = timeval_ms() + 100;
1258  while (target->state != TARGET_HALTED) {
1259  if (timeval_ms() > then)
1260  break;
1261 
1262  retval = cortex_a_poll(target);
1263  if (retval != ERROR_OK)
1264  return retval;
1265  }
1266 
1267  if (target->state != TARGET_HALTED) {
1268  LOG_TARGET_DEBUG(target, "timeout waiting for target halt, try halt");
1269 
1270  retval = cortex_a_halt(target);
1271  if (retval != ERROR_OK)
1272  return retval;
1273 
1274  retval = cortex_a_poll(target);
1275  if (retval != ERROR_OK)
1276  return retval;
1277 
1278  if (target->state != TARGET_HALTED) {
1279  LOG_TARGET_ERROR(target, "timeout waiting for target halt");
1280  return ERROR_FAIL;
1281  }
1282  }
1283 
1284  cortex_a_unset_breakpoint(target, &stepbreakpoint);
1285 
1286  /* Re-enable interrupts if they were disabled */
1287  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1289  if (retval != ERROR_OK)
1290  return retval;
1291  }
1292 
1293 
1295 
1296  if (breakpoint)
1298 
1299  return ERROR_OK;
1300 }
1301 
1302 static int cortex_a_restore_context(struct target *target, bool bpwp)
1303 {
1304  struct armv7a_common *armv7a = target_to_armv7a(target);
1305 
1306  LOG_DEBUG(" ");
1307 
1308  if (armv7a->pre_restore_context)
1309  armv7a->pre_restore_context(target);
1310 
1311  return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1312 }
1313 
1314 /*
1315  * Cortex-A Breakpoint and watchpoint functions
1316  */
1317 
1318 /* Setup hardware Breakpoint Register Pair */
1320  struct breakpoint *breakpoint, uint8_t matchmode)
1321 {
1322  int retval;
1323  int brp_i = 0;
1324  uint32_t control;
1325  uint8_t byte_addr_select = 0x0F;
1326  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1327  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1328  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1329 
1330  if (breakpoint->is_set) {
1331  LOG_WARNING("breakpoint already set");
1332  return ERROR_OK;
1333  }
1334 
1335  if (breakpoint->type == BKPT_HARD) {
1336  while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1337  brp_i++;
1338  if (brp_i >= cortex_a->brp_num) {
1339  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1341  }
1342  breakpoint_hw_set(breakpoint, brp_i);
1343  if (breakpoint->length == 2)
1344  byte_addr_select = (3 << (breakpoint->address & 0x02));
1345  control = ((matchmode & 0x7) << 20)
1346  | (byte_addr_select << 5)
1347  | (3 << 1) | 1;
1348  brp_list[brp_i].used = true;
1349  brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1350  brp_list[brp_i].control = control;
1351  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1352  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1353  brp_list[brp_i].value);
1354  if (retval != ERROR_OK)
1355  return retval;
1356  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1357  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1358  brp_list[brp_i].control);
1359  if (retval != ERROR_OK)
1360  return retval;
1361  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1362  brp_list[brp_i].control,
1363  brp_list[brp_i].value);
1364  } else if (breakpoint->type == BKPT_SOFT) {
1365  uint8_t code[4];
1366  if (breakpoint->length == 2) {
1367  /* length == 2: Thumb breakpoint */
1368  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1369  } else if (breakpoint->length == 3) {
1370  /* length == 3: Thumb-2 breakpoint, actual encoding is
1371  * a regular Thumb BKPT instruction but we replace a
1372  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1373  * length
1374  */
1375  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1376  breakpoint->length = 4;
1377  } else {
1378  /* length == 4, normal ARM breakpoint */
1379  buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1380  }
1381 
1382  /*
1383  * ARMv7-A/R fetches instructions in little-endian on both LE and BE CPUs.
1384  * But Cortex-R4 and Cortex-R5 big-endian require BE instructions.
1385  * https://developer.arm.com/documentation/den0042/a/Coding-for-Cortex-R-Processors/Endianness
1386  * https://developer.arm.com/documentation/den0013/d/Porting/Endianness
1387  */
1388  if ((((cortex_a->cpuid & CPUDBG_CPUID_MASK) == CPUDBG_CPUID_CORTEX_R4) ||
1389  ((cortex_a->cpuid & CPUDBG_CPUID_MASK) == CPUDBG_CPUID_CORTEX_R5)) &&
1391  // In place swapping is allowed
1392  buf_bswap32(code, code, 4);
1393  }
1394 
1395  retval = target_read_memory(target,
1396  breakpoint->address & 0xFFFFFFFE,
1397  breakpoint->length, 1,
1399  if (retval != ERROR_OK)
1400  return retval;
1401 
1402  /* make sure data cache is cleaned & invalidated down to PoC */
1404 
1405  retval = target_write_memory(target,
1406  breakpoint->address & 0xFFFFFFFE,
1407  breakpoint->length, 1, code);
1408  if (retval != ERROR_OK)
1409  return retval;
1410 
1411  /* update i-cache at breakpoint location */
1414 
1415  breakpoint->is_set = true;
1416  }
1417 
1418  return ERROR_OK;
1419 }
1420 
1422  struct breakpoint *breakpoint, uint8_t matchmode)
1423 {
1424  int retval = ERROR_FAIL;
1425  int brp_i = 0;
1426  uint32_t control;
1427  uint8_t byte_addr_select = 0x0F;
1428  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1429  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1430  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1431 
1432  if (breakpoint->is_set) {
1433  LOG_WARNING("breakpoint already set");
1434  return retval;
1435  }
1436  /*check available context BRPs*/
1437  while ((brp_list[brp_i].used ||
1438  (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1439  brp_i++;
1440 
1441  if (brp_i >= cortex_a->brp_num) {
1442  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1443  return ERROR_FAIL;
1444  }
1445 
1446  breakpoint_hw_set(breakpoint, brp_i);
1447  control = ((matchmode & 0x7) << 20)
1448  | (byte_addr_select << 5)
1449  | (3 << 1) | 1;
1450  brp_list[brp_i].used = true;
1451  brp_list[brp_i].value = (breakpoint->asid);
1452  brp_list[brp_i].control = control;
1453  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1454  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1455  brp_list[brp_i].value);
1456  if (retval != ERROR_OK)
1457  return retval;
1458  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1459  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1460  brp_list[brp_i].control);
1461  if (retval != ERROR_OK)
1462  return retval;
1463  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1464  brp_list[brp_i].control,
1465  brp_list[brp_i].value);
1466  return ERROR_OK;
1467 
1468 }
1469 
1471 {
1472  int retval = ERROR_FAIL;
1473  int brp_1 = 0; /* holds the contextID pair */
1474  int brp_2 = 0; /* holds the IVA pair */
1475  uint32_t control_ctx, control_iva;
1476  uint8_t ctx_byte_addr_select = 0x0F;
1477  uint8_t iva_byte_addr_select = 0x0F;
1478  uint8_t ctx_machmode = 0x03;
1479  uint8_t iva_machmode = 0x01;
1480  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1481  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1482  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1483 
1484  if (breakpoint->is_set) {
1485  LOG_WARNING("breakpoint already set");
1486  return retval;
1487  }
1488  /*check available context BRPs*/
1489  while ((brp_list[brp_1].used ||
1490  (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1491  brp_1++;
1492 
1493  LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1494  if (brp_1 >= cortex_a->brp_num) {
1495  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1496  return ERROR_FAIL;
1497  }
1498 
1499  while ((brp_list[brp_2].used ||
1500  (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1501  brp_2++;
1502 
1503  LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1504  if (brp_2 >= cortex_a->brp_num) {
1505  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1506  return ERROR_FAIL;
1507  }
1508 
1509  breakpoint_hw_set(breakpoint, brp_1);
1510  breakpoint->linked_brp = brp_2;
1511  control_ctx = ((ctx_machmode & 0x7) << 20)
1512  | (brp_2 << 16)
1513  | (0 << 14)
1514  | (ctx_byte_addr_select << 5)
1515  | (3 << 1) | 1;
1516  brp_list[brp_1].used = true;
1517  brp_list[brp_1].value = (breakpoint->asid);
1518  brp_list[brp_1].control = control_ctx;
1519  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1520  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1521  brp_list[brp_1].value);
1522  if (retval != ERROR_OK)
1523  return retval;
1524  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1525  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1526  brp_list[brp_1].control);
1527  if (retval != ERROR_OK)
1528  return retval;
1529 
1530  control_iva = ((iva_machmode & 0x7) << 20)
1531  | (brp_1 << 16)
1532  | (iva_byte_addr_select << 5)
1533  | (3 << 1) | 1;
1534  brp_list[brp_2].used = true;
1535  brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1536  brp_list[brp_2].control = control_iva;
1537  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1538  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1539  brp_list[brp_2].value);
1540  if (retval != ERROR_OK)
1541  return retval;
1542  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1543  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1544  brp_list[brp_2].control);
1545  if (retval != ERROR_OK)
1546  return retval;
1547 
1548  return ERROR_OK;
1549 }
1550 
1552 {
1553  int retval;
1554  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1555  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1556  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1557 
1558  if (!breakpoint->is_set) {
1559  LOG_WARNING("breakpoint not set");
1560  return ERROR_OK;
1561  }
1562 
1563  if (breakpoint->type == BKPT_HARD) {
1564  if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1565  int brp_i = breakpoint->number;
1566  int brp_j = breakpoint->linked_brp;
1567  if (brp_i >= cortex_a->brp_num) {
1568  LOG_DEBUG("Invalid BRP number in breakpoint");
1569  return ERROR_OK;
1570  }
1571  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1572  brp_list[brp_i].control, brp_list[brp_i].value);
1573  brp_list[brp_i].used = false;
1574  brp_list[brp_i].value = 0;
1575  brp_list[brp_i].control = 0;
1576  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1577  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1578  brp_list[brp_i].control);
1579  if (retval != ERROR_OK)
1580  return retval;
1581  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1582  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1583  brp_list[brp_i].value);
1584  if (retval != ERROR_OK)
1585  return retval;
1586  if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1587  LOG_DEBUG("Invalid BRP number in breakpoint");
1588  return ERROR_OK;
1589  }
1590  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1591  brp_list[brp_j].control, brp_list[brp_j].value);
1592  brp_list[brp_j].used = false;
1593  brp_list[brp_j].value = 0;
1594  brp_list[brp_j].control = 0;
1595  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1596  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1597  brp_list[brp_j].control);
1598  if (retval != ERROR_OK)
1599  return retval;
1600  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1601  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1602  brp_list[brp_j].value);
1603  if (retval != ERROR_OK)
1604  return retval;
1605  breakpoint->linked_brp = 0;
1606  breakpoint->is_set = false;
1607  return ERROR_OK;
1608 
1609  } else {
1610  int brp_i = breakpoint->number;
1611  if (brp_i >= cortex_a->brp_num) {
1612  LOG_DEBUG("Invalid BRP number in breakpoint");
1613  return ERROR_OK;
1614  }
1615  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1616  brp_list[brp_i].control, brp_list[brp_i].value);
1617  brp_list[brp_i].used = false;
1618  brp_list[brp_i].value = 0;
1619  brp_list[brp_i].control = 0;
1620  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1621  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1622  brp_list[brp_i].control);
1623  if (retval != ERROR_OK)
1624  return retval;
1625  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1626  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1627  brp_list[brp_i].value);
1628  if (retval != ERROR_OK)
1629  return retval;
1630  breakpoint->is_set = false;
1631  return ERROR_OK;
1632  }
1633  } else {
1634 
1635  /* make sure data cache is cleaned & invalidated down to PoC */
1637  breakpoint->length);
1638 
1639  /* restore original instruction (kept in target endianness) */
1640  if (breakpoint->length == 4) {
1641  retval = target_write_memory(target,
1642  breakpoint->address & 0xFFFFFFFE,
1643  4, 1, breakpoint->orig_instr);
1644  if (retval != ERROR_OK)
1645  return retval;
1646  } else {
1647  retval = target_write_memory(target,
1648  breakpoint->address & 0xFFFFFFFE,
1649  2, 1, breakpoint->orig_instr);
1650  if (retval != ERROR_OK)
1651  return retval;
1652  }
1653 
1654  /* update i-cache at breakpoint location */
1656  breakpoint->length);
1658  breakpoint->length);
1659  }
1660  breakpoint->is_set = false;
1661 
1662  return ERROR_OK;
1663 }
1664 
1666  struct breakpoint *breakpoint)
1667 {
1668  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1669 
1670  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1671  LOG_INFO("no hardware breakpoint available");
1673  }
1674 
1675  if (breakpoint->type == BKPT_HARD)
1676  cortex_a->brp_num_available--;
1677 
1678  return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1679 }
1680 
1682  struct breakpoint *breakpoint)
1683 {
1684  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1685 
1686  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1687  LOG_INFO("no hardware breakpoint available");
1689  }
1690 
1691  if (breakpoint->type == BKPT_HARD)
1692  cortex_a->brp_num_available--;
1693 
1694  return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1695 }
1696 
1698  struct breakpoint *breakpoint)
1699 {
1700  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1701 
1702  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1703  LOG_INFO("no hardware breakpoint available");
1705  }
1706 
1707  if (breakpoint->type == BKPT_HARD)
1708  cortex_a->brp_num_available--;
1709 
1711 }
1712 
1713 
1715 {
1716  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1717 
1718 #if 0
1719 /* It is perfectly possible to remove breakpoints while the target is running */
1720  if (target->state != TARGET_HALTED) {
1721  LOG_WARNING("target not halted");
1722  return ERROR_TARGET_NOT_HALTED;
1723  }
1724 #endif
1725 
1726  if (breakpoint->is_set) {
1728  if (breakpoint->type == BKPT_HARD)
1729  cortex_a->brp_num_available++;
1730  }
1731 
1732 
1733  return ERROR_OK;
1734 }
1735 
1747 {
1748  int retval = ERROR_OK;
1749  int wrp_i = 0;
1750  uint32_t control;
1751  uint32_t address;
1752  uint8_t address_mask;
1753  uint8_t byte_address_select;
1754  uint8_t load_store_access_control = 0x3;
1755  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1756  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1757  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1758 
1759  if (watchpoint->is_set) {
1760  LOG_WARNING("watchpoint already set");
1761  return retval;
1762  }
1763 
1764  /* check available context WRPs */
1765  while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1766  wrp_i++;
1767 
1768  if (wrp_i >= cortex_a->wrp_num) {
1769  LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1770  return ERROR_FAIL;
1771  }
1772 
1773  if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1774  (watchpoint->length & (watchpoint->length - 1))) {
1775  LOG_WARNING("watchpoint length must be a power of 2");
1776  return ERROR_FAIL;
1777  }
1778 
1779  if (watchpoint->address & (watchpoint->length - 1)) {
1780  LOG_WARNING("watchpoint address must be aligned at length");
1781  return ERROR_FAIL;
1782  }
1783 
1784  /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
1785  /* handle wp length 1 and 2 through byte select */
1786  switch (watchpoint->length) {
1787  case 1:
1788  byte_address_select = BIT(watchpoint->address & 0x3);
1789  address = watchpoint->address & ~0x3;
1790  address_mask = 0;
1791  break;
1792 
1793  case 2:
1794  byte_address_select = 0x03 << (watchpoint->address & 0x2);
1795  address = watchpoint->address & ~0x3;
1796  address_mask = 0;
1797  break;
1798 
1799  case 4:
1800  byte_address_select = 0x0f;
1802  address_mask = 0;
1803  break;
1804 
1805  default:
1806  byte_address_select = 0xff;
1808  address_mask = ilog2(watchpoint->length);
1809  break;
1810  }
1811 
1812  watchpoint_set(watchpoint, wrp_i);
1813  control = (address_mask << 24) |
1814  (byte_address_select << 5) |
1815  (load_store_access_control << 3) |
1816  (0x3 << 1) | 1;
1817  wrp_list[wrp_i].used = true;
1818  wrp_list[wrp_i].value = address;
1819  wrp_list[wrp_i].control = control;
1820 
1821  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1822  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1823  wrp_list[wrp_i].value);
1824  if (retval != ERROR_OK)
1825  return retval;
1826 
1827  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1828  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1829  wrp_list[wrp_i].control);
1830  if (retval != ERROR_OK)
1831  return retval;
1832 
1833  LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1834  wrp_list[wrp_i].control,
1835  wrp_list[wrp_i].value);
1836 
1837  return ERROR_OK;
1838 }
1839 
1849 {
1850  int retval;
1851  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1852  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1853  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1854 
1855  if (!watchpoint->is_set) {
1856  LOG_WARNING("watchpoint not set");
1857  return ERROR_OK;
1858  }
1859 
1860  int wrp_i = watchpoint->number;
1861  if (wrp_i >= cortex_a->wrp_num) {
1862  LOG_DEBUG("Invalid WRP number in watchpoint");
1863  return ERROR_OK;
1864  }
1865  LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1866  wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1867  wrp_list[wrp_i].used = false;
1868  wrp_list[wrp_i].value = 0;
1869  wrp_list[wrp_i].control = 0;
1870  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1871  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1872  wrp_list[wrp_i].control);
1873  if (retval != ERROR_OK)
1874  return retval;
1875  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1876  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1877  wrp_list[wrp_i].value);
1878  if (retval != ERROR_OK)
1879  return retval;
1880  watchpoint->is_set = false;
1881 
1882  return ERROR_OK;
1883 }
1884 
1894 {
1895  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1896 
1897  if (cortex_a->wrp_num_available < 1) {
1898  LOG_INFO("no hardware watchpoint available");
1900  }
1901 
1902  int retval = cortex_a_set_watchpoint(target, watchpoint);
1903  if (retval != ERROR_OK)
1904  return retval;
1905 
1906  cortex_a->wrp_num_available--;
1907  return ERROR_OK;
1908 }
1909 
1919 {
1920  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1921 
1922  if (watchpoint->is_set) {
1923  cortex_a->wrp_num_available++;
1925  }
1926  return ERROR_OK;
1927 }
1928 
1929 
1930 /*
1931  * Cortex-A Reset functions
1932  */
1933 
1935 {
1936  struct armv7a_common *armv7a = target_to_armv7a(target);
1937 
1938  LOG_DEBUG(" ");
1939 
1940  /* FIXME when halt is requested, make it work somehow... */
1941 
1942  /* This function can be called in "target not examined" state */
1943 
1944  /* Issue some kind of warm reset. */
1947  else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1948  /* REVISIT handle "pulls" cases, if there's
1949  * hardware that needs them to work.
1950  */
1951 
1952  /*
1953  * FIXME: fix reset when transport is not JTAG. This is a temporary
1954  * work-around for release v0.10 that is not intended to stay!
1955  */
1956  if (!transport_is_jtag() ||
1959 
1960  } else {
1961  LOG_ERROR("%s: how to reset?", target_name(target));
1962  return ERROR_FAIL;
1963  }
1964 
1965  /* registers are now invalid */
1966  if (armv7a->arm.core_cache)
1968 
1970 
1971  return ERROR_OK;
1972 }
1973 
1975 {
1976  struct armv7a_common *armv7a = target_to_armv7a(target);
1977  int retval;
1978 
1979  LOG_DEBUG(" ");
1980 
1981  /* be certain SRST is off */
1983 
1984  if (target_was_examined(target)) {
1985  retval = cortex_a_poll(target);
1986  if (retval != ERROR_OK)
1987  return retval;
1988  }
1989 
1990  if (target->reset_halt) {
1991  if (target->state != TARGET_HALTED) {
1992  LOG_WARNING("%s: ran after reset and before halt ...",
1993  target_name(target));
1994  if (target_was_examined(target)) {
1995  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1996  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1997  if (retval != ERROR_OK)
1998  return retval;
1999  } else
2001  }
2002  }
2003 
2004  return ERROR_OK;
2005 }
2006 
2007 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
2008 {
2009  /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
2010  * New desired mode must be in mode. Current value of DSCR must be in
2011  * *dscr, which is updated with new value.
2012  *
2013  * This function elides actually sending the mode-change over the debug
2014  * interface if the mode is already set as desired.
2015  */
2016  uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
2017  if (new_dscr != *dscr) {
2018  struct armv7a_common *armv7a = target_to_armv7a(target);
2019  int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2020  armv7a->debug_base + CPUDBG_DSCR, new_dscr);
2021  if (retval == ERROR_OK)
2022  *dscr = new_dscr;
2023  return retval;
2024  } else {
2025  return ERROR_OK;
2026  }
2027 }
2028 
2029 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
2030  uint32_t value, uint32_t *dscr)
2031 {
2032  /* Waits until the specified bit(s) of DSCR take on a specified value. */
2033  struct armv7a_common *armv7a = target_to_armv7a(target);
2034  int64_t then;
2035  int retval;
2036 
2037  if ((*dscr & mask) == value)
2038  return ERROR_OK;
2039 
2040  then = timeval_ms();
2041  while (1) {
2042  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2043  armv7a->debug_base + CPUDBG_DSCR, dscr);
2044  if (retval != ERROR_OK) {
2045  LOG_ERROR("Could not read DSCR register");
2046  return retval;
2047  }
2048  if ((*dscr & mask) == value)
2049  break;
2050  if (timeval_ms() > then + 1000) {
2051  LOG_ERROR("timeout waiting for DSCR bit change");
2052  return ERROR_FAIL;
2053  }
2054  }
2055  return ERROR_OK;
2056 }
2057 
2058 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
2059  uint32_t *data, uint32_t *dscr)
2060 {
2061  int retval;
2062  struct armv7a_common *armv7a = target_to_armv7a(target);
2063 
2064  /* Move from coprocessor to R0. */
2065  retval = cortex_a_exec_opcode(target, opcode, dscr);
2066  if (retval != ERROR_OK)
2067  return retval;
2068 
2069  /* Move from R0 to DTRTX. */
2070  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2071  if (retval != ERROR_OK)
2072  return retval;
2073 
2074  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2075  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2076  * must also check TXfull_l). Most of the time this will be free
2077  * because TXfull_l will be set immediately and cached in dscr. */
2079  DSCR_DTRTX_FULL_LATCHED, dscr);
2080  if (retval != ERROR_OK)
2081  return retval;
2082 
2083  /* Read the value transferred to DTRTX. */
2084  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2085  armv7a->debug_base + CPUDBG_DTRTX, data);
2086  if (retval != ERROR_OK)
2087  return retval;
2088 
2089  return ERROR_OK;
2090 }
2091 
2092 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2093  uint32_t *dfsr, uint32_t *dscr)
2094 {
2095  int retval;
2096 
2097  if (dfar) {
2098  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2099  if (retval != ERROR_OK)
2100  return retval;
2101  }
2102 
2103  if (dfsr) {
2104  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2105  if (retval != ERROR_OK)
2106  return retval;
2107  }
2108 
2109  return ERROR_OK;
2110 }
2111 
2112 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2113  uint32_t data, uint32_t *dscr)
2114 {
2115  int retval;
2116  struct armv7a_common *armv7a = target_to_armv7a(target);
2117 
2118  /* Write the value into DTRRX. */
2119  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2120  armv7a->debug_base + CPUDBG_DTRRX, data);
2121  if (retval != ERROR_OK)
2122  return retval;
2123 
2124  /* Move from DTRRX to R0. */
2125  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2126  if (retval != ERROR_OK)
2127  return retval;
2128 
2129  /* Move from R0 to coprocessor. */
2130  retval = cortex_a_exec_opcode(target, opcode, dscr);
2131  if (retval != ERROR_OK)
2132  return retval;
2133 
2134  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2135  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2136  * check RXfull_l). Most of the time this will be free because RXfull_l
2137  * will be cleared immediately and cached in dscr. */
2139  if (retval != ERROR_OK)
2140  return retval;
2141 
2142  return ERROR_OK;
2143 }
2144 
2145 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2146  uint32_t dfsr, uint32_t *dscr)
2147 {
2148  int retval;
2149 
2150  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2151  if (retval != ERROR_OK)
2152  return retval;
2153 
2154  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2155  if (retval != ERROR_OK)
2156  return retval;
2157 
2158  return ERROR_OK;
2159 }
2160 
2161 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2162 {
2163  uint32_t status, upper4;
2164 
2165  if (dfsr & (1 << 9)) {
2166  /* LPAE format. */
2167  status = dfsr & 0x3f;
2168  upper4 = status >> 2;
2169  if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2171  else if (status == 33)
2173  else
2174  return ERROR_TARGET_DATA_ABORT;
2175  } else {
2176  /* Normal format. */
2177  status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2178  if (status == 1)
2180  else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2181  status == 9 || status == 11 || status == 13 || status == 15)
2183  else
2184  return ERROR_TARGET_DATA_ABORT;
2185  }
2186 }
2187 
2189  uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2190 {
2191  /* Writes count objects of size size from *buffer. Old value of DSCR must
2192  * be in *dscr; updated to new value. This is slow because it works for
2193  * non-word-sized objects. Avoid unaligned accesses as they do not work
2194  * on memory address space without "Normal" attribute. If size == 4 and
2195  * the address is aligned, cortex_a_write_cpu_memory_fast should be
2196  * preferred.
2197  * Preconditions:
2198  * - Address is in R0.
2199  * - R0 is marked dirty.
2200  */
2201  struct armv7a_common *armv7a = target_to_armv7a(target);
2202  struct arm *arm = &armv7a->arm;
2203  int retval;
2204 
2205  /* Mark register R1 as dirty, to use for transferring data. */
2206  arm_reg_current(arm, 1)->dirty = true;
2207 
2208  /* Switch to non-blocking mode if not already in that mode. */
2210  if (retval != ERROR_OK)
2211  return retval;
2212 
2213  /* Go through the objects. */
2214  while (count) {
2215  /* Write the value to store into DTRRX. */
2216  uint32_t data, opcode;
2217  if (size == 1)
2218  data = *buffer;
2219  else if (size == 2)
2221  else
2223  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2224  armv7a->debug_base + CPUDBG_DTRRX, data);
2225  if (retval != ERROR_OK)
2226  return retval;
2227 
2228  /* Transfer the value from DTRRX to R1. */
2229  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2230  if (retval != ERROR_OK)
2231  return retval;
2232 
2233  /* Write the value transferred to R1 into memory. */
2234  if (size == 1)
2235  opcode = ARMV4_5_STRB_IP(1, 0);
2236  else if (size == 2)
2237  opcode = ARMV4_5_STRH_IP(1, 0);
2238  else
2239  opcode = ARMV4_5_STRW_IP(1, 0);
2240  retval = cortex_a_exec_opcode(target, opcode, dscr);
2241  if (retval != ERROR_OK)
2242  return retval;
2243 
2244  /* Check for faults and return early. */
2246  return ERROR_OK; /* A data fault is not considered a system failure. */
2247 
2248  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2249  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2250  * must also check RXfull_l). Most of the time this will be free
2251  * because RXfull_l will be cleared immediately and cached in dscr. */
2253  if (retval != ERROR_OK)
2254  return retval;
2255 
2256  /* Advance. */
2257  buffer += size;
2258  --count;
2259  }
2260 
2261  return ERROR_OK;
2262 }
2263 
2265  uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2266 {
2267  /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2268  * in *dscr; updated to new value. This is fast but only works for
2269  * word-sized objects at aligned addresses.
2270  * Preconditions:
2271  * - Address is in R0 and must be a multiple of 4.
2272  * - R0 is marked dirty.
2273  */
2274  struct armv7a_common *armv7a = target_to_armv7a(target);
2275  int retval;
2276 
2277  /* Switch to fast mode if not already in that mode. */
2279  if (retval != ERROR_OK)
2280  return retval;
2281 
2282  /* Latch STC instruction. */
2283  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2284  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2285  if (retval != ERROR_OK)
2286  return retval;
2287 
2288  /* Transfer all the data and issue all the instructions. */
2289  return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2290  4, count, armv7a->debug_base + CPUDBG_DTRRX);
2291 }
2292 
2294  uint32_t address, uint32_t size,
2295  uint32_t count, const uint8_t *buffer)
2296 {
2297  /* Write memory through the CPU. */
2298  int retval, final_retval;
2299  struct armv7a_common *armv7a = target_to_armv7a(target);
2300  struct arm *arm = &armv7a->arm;
2301  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2302 
2303  LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2304  address, size, count);
2305  if (target->state != TARGET_HALTED) {
2306  LOG_TARGET_ERROR(target, "not halted");
2307  return ERROR_TARGET_NOT_HALTED;
2308  }
2309 
2310  if (!count)
2311  return ERROR_OK;
2312 
2313  /* Clear any abort. */
2314  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2316  if (retval != ERROR_OK)
2317  return retval;
2318 
2319  /* Read DSCR. */
2320  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2321  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2322  if (retval != ERROR_OK)
2323  return retval;
2324 
2325  /* Switch to non-blocking mode if not already in that mode. */
2327  if (retval != ERROR_OK)
2328  return retval;
2329 
2330  /* Mark R0 as dirty. */
2331  arm_reg_current(arm, 0)->dirty = true;
2332 
2333  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2334  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2335  if (retval != ERROR_OK)
2336  return retval;
2337 
2338  /* Get the memory address into R0. */
2339  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2340  armv7a->debug_base + CPUDBG_DTRRX, address);
2341  if (retval != ERROR_OK)
2342  return retval;
2343  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2344  if (retval != ERROR_OK)
2345  return retval;
2346 
2347  if (size == 4 && (address % 4) == 0) {
2348  /* We are doing a word-aligned transfer, so use fast mode. */
2350  } else {
2351  /* Use slow path. Adjust size for aligned accesses */
2352  switch (address % 4) {
2353  case 1:
2354  case 3:
2355  count *= size;
2356  size = 1;
2357  break;
2358  case 2:
2359  if (size == 4) {
2360  count *= 2;
2361  size = 2;
2362  }
2363  case 0:
2364  default:
2365  break;
2366  }
2368  }
2369 
2370  final_retval = retval;
2371 
2372  /* Switch to non-blocking mode if not already in that mode. */
2374  if (final_retval == ERROR_OK)
2375  final_retval = retval;
2376 
2377  /* Wait for last issued instruction to complete. */
2378  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2379  if (final_retval == ERROR_OK)
2380  final_retval = retval;
2381 
2382  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2383  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2384  * check RXfull_l). Most of the time this will be free because RXfull_l
2385  * will be cleared immediately and cached in dscr. However, don't do this
2386  * if there is fault, because then the instruction might not have completed
2387  * successfully. */
2388  if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2390  if (retval != ERROR_OK)
2391  return retval;
2392  }
2393 
2394  /* If there were any sticky abort flags, clear them. */
2396  fault_dscr = dscr;
2400  } else {
2401  fault_dscr = 0;
2402  }
2403 
2404  /* Handle synchronous data faults. */
2405  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2406  if (final_retval == ERROR_OK) {
2407  /* Final return value will reflect cause of fault. */
2408  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2409  if (retval == ERROR_OK) {
2410  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2411  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2412  } else
2413  final_retval = retval;
2414  }
2415  /* Fault destroyed DFAR/DFSR; restore them. */
2416  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2417  if (retval != ERROR_OK)
2418  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2419  }
2420 
2421  /* Handle asynchronous data faults. */
2422  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2423  if (final_retval == ERROR_OK)
2424  /* No other error has been recorded so far, so keep this one. */
2425  final_retval = ERROR_TARGET_DATA_ABORT;
2426  }
2427 
2428  /* If the DCC is nonempty, clear it. */
2429  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2430  uint32_t dummy;
2431  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2432  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2433  if (final_retval == ERROR_OK)
2434  final_retval = retval;
2435  }
2436  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2437  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2438  if (final_retval == ERROR_OK)
2439  final_retval = retval;
2440  }
2441 
2442  /* Done. */
2443  return final_retval;
2444 }
2445 
2447  uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2448 {
2449  /* Reads count objects of size size into *buffer. Old value of DSCR must be
2450  * in *dscr; updated to new value. This is slow because it works for
2451  * non-word-sized objects. Avoid unaligned accesses as they do not work
2452  * on memory address space without "Normal" attribute. If size == 4 and
2453  * the address is aligned, cortex_a_read_cpu_memory_fast should be
2454  * preferred.
2455  * Preconditions:
2456  * - Address is in R0.
2457  * - R0 is marked dirty.
2458  */
2459  struct armv7a_common *armv7a = target_to_armv7a(target);
2460  struct arm *arm = &armv7a->arm;
2461  int retval;
2462 
2463  /* Mark register R1 as dirty, to use for transferring data. */
2464  arm_reg_current(arm, 1)->dirty = true;
2465 
2466  /* Switch to non-blocking mode if not already in that mode. */
2468  if (retval != ERROR_OK)
2469  return retval;
2470 
2471  /* Go through the objects. */
2472  while (count) {
2473  /* Issue a load of the appropriate size to R1. */
2474  uint32_t opcode, data;
2475  if (size == 1)
2476  opcode = ARMV4_5_LDRB_IP(1, 0);
2477  else if (size == 2)
2478  opcode = ARMV4_5_LDRH_IP(1, 0);
2479  else
2480  opcode = ARMV4_5_LDRW_IP(1, 0);
2481  retval = cortex_a_exec_opcode(target, opcode, dscr);
2482  if (retval != ERROR_OK)
2483  return retval;
2484 
2485  /* Issue a write of R1 to DTRTX. */
2486  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2487  if (retval != ERROR_OK)
2488  return retval;
2489 
2490  /* Check for faults and return early. */
2492  return ERROR_OK; /* A data fault is not considered a system failure. */
2493 
2494  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2495  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2496  * must also check TXfull_l). Most of the time this will be free
2497  * because TXfull_l will be set immediately and cached in dscr. */
2499  DSCR_DTRTX_FULL_LATCHED, dscr);
2500  if (retval != ERROR_OK)
2501  return retval;
2502 
2503  /* Read the value transferred to DTRTX into the buffer. */
2504  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2505  armv7a->debug_base + CPUDBG_DTRTX, &data);
2506  if (retval != ERROR_OK)
2507  return retval;
2508  if (size == 1)
2509  *buffer = (uint8_t) data;
2510  else if (size == 2)
2511  target_buffer_set_u16(target, buffer, (uint16_t) data);
2512  else
2514 
2515  /* Advance. */
2516  buffer += size;
2517  --count;
2518  }
2519 
2520  return ERROR_OK;
2521 }
2522 
2524  uint32_t count, uint8_t *buffer, uint32_t *dscr)
2525 {
2526  /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2527  * *dscr; updated to new value. This is fast but only works for word-sized
2528  * objects at aligned addresses.
2529  * Preconditions:
2530  * - Address is in R0 and must be a multiple of 4.
2531  * - R0 is marked dirty.
2532  */
2533  struct armv7a_common *armv7a = target_to_armv7a(target);
2534  uint32_t u32;
2535  int retval;
2536 
2537  /* Switch to non-blocking mode if not already in that mode. */
2539  if (retval != ERROR_OK)
2540  return retval;
2541 
2542  /* Issue the LDC instruction via a write to ITR. */
2543  retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2544  if (retval != ERROR_OK)
2545  return retval;
2546 
2547  count--;
2548 
2549  if (count > 0) {
2550  /* Switch to fast mode if not already in that mode. */
2552  if (retval != ERROR_OK)
2553  return retval;
2554 
2555  /* Latch LDC instruction. */
2556  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2557  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2558  if (retval != ERROR_OK)
2559  return retval;
2560 
2561  /* Read the value transferred to DTRTX into the buffer. Due to fast
2562  * mode rules, this blocks until the instruction finishes executing and
2563  * then reissues the read instruction to read the next word from
2564  * memory. The last read of DTRTX in this call reads the second-to-last
2565  * word from memory and issues the read instruction for the last word.
2566  */
2567  retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2568  4, count, armv7a->debug_base + CPUDBG_DTRTX);
2569  if (retval != ERROR_OK)
2570  return retval;
2571 
2572  /* Advance. */
2573  buffer += count * 4;
2574  }
2575 
2576  /* Wait for last issued instruction to complete. */
2577  retval = cortex_a_wait_instrcmpl(target, dscr, false);
2578  if (retval != ERROR_OK)
2579  return retval;
2580 
2581  /* Switch to non-blocking mode if not already in that mode. */
2583  if (retval != ERROR_OK)
2584  return retval;
2585 
2586  /* Check for faults and return early. */
2588  return ERROR_OK; /* A data fault is not considered a system failure. */
2589 
2590  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2591  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2592  * check TXfull_l). Most of the time this will be free because TXfull_l
2593  * will be set immediately and cached in dscr. */
2595  DSCR_DTRTX_FULL_LATCHED, dscr);
2596  if (retval != ERROR_OK)
2597  return retval;
2598 
2599  /* Read the value transferred to DTRTX into the buffer. This is the last
2600  * word. */
2601  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2602  armv7a->debug_base + CPUDBG_DTRTX, &u32);
2603  if (retval != ERROR_OK)
2604  return retval;
2606 
2607  return ERROR_OK;
2608 }
2609 
2611  uint32_t address, uint32_t size,
2612  uint32_t count, uint8_t *buffer)
2613 {
2614  /* Read memory through the CPU. */
2615  int retval, final_retval;
2616  struct armv7a_common *armv7a = target_to_armv7a(target);
2617  struct arm *arm = &armv7a->arm;
2618  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2619 
2620  LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2621  address, size, count);
2622  if (target->state != TARGET_HALTED) {
2623  LOG_TARGET_ERROR(target, "not halted");
2624  return ERROR_TARGET_NOT_HALTED;
2625  }
2626 
2627  if (!count)
2628  return ERROR_OK;
2629 
2630  /* Clear any abort. */
2631  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2633  if (retval != ERROR_OK)
2634  return retval;
2635 
2636  /* Read DSCR */
2637  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2638  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2639  if (retval != ERROR_OK)
2640  return retval;
2641 
2642  /* Switch to non-blocking mode if not already in that mode. */
2644  if (retval != ERROR_OK)
2645  return retval;
2646 
2647  /* Mark R0 as dirty. */
2648  arm_reg_current(arm, 0)->dirty = true;
2649 
2650  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2651  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2652  if (retval != ERROR_OK)
2653  return retval;
2654 
2655  /* Get the memory address into R0. */
2656  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2657  armv7a->debug_base + CPUDBG_DTRRX, address);
2658  if (retval != ERROR_OK)
2659  return retval;
2660  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2661  if (retval != ERROR_OK)
2662  return retval;
2663 
2664  if (size == 4 && (address % 4) == 0) {
2665  /* We are doing a word-aligned transfer, so use fast mode. */
2666  retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2667  } else {
2668  /* Use slow path. Adjust size for aligned accesses */
2669  switch (address % 4) {
2670  case 1:
2671  case 3:
2672  count *= size;
2673  size = 1;
2674  break;
2675  case 2:
2676  if (size == 4) {
2677  count *= 2;
2678  size = 2;
2679  }
2680  break;
2681  case 0:
2682  default:
2683  break;
2684  }
2686  }
2687 
2688  final_retval = retval;
2689 
2690  /* Switch to non-blocking mode if not already in that mode. */
2692  if (final_retval == ERROR_OK)
2693  final_retval = retval;
2694 
2695  /* Wait for last issued instruction to complete. */
2696  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2697  if (final_retval == ERROR_OK)
2698  final_retval = retval;
2699 
2700  /* If there were any sticky abort flags, clear them. */
2702  fault_dscr = dscr;
2706  } else {
2707  fault_dscr = 0;
2708  }
2709 
2710  /* Handle synchronous data faults. */
2711  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2712  if (final_retval == ERROR_OK) {
2713  /* Final return value will reflect cause of fault. */
2714  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2715  if (retval == ERROR_OK) {
2716  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2717  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2718  } else
2719  final_retval = retval;
2720  }
2721  /* Fault destroyed DFAR/DFSR; restore them. */
2722  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2723  if (retval != ERROR_OK)
2724  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2725  }
2726 
2727  /* Handle asynchronous data faults. */
2728  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2729  if (final_retval == ERROR_OK)
2730  /* No other error has been recorded so far, so keep this one. */
2731  final_retval = ERROR_TARGET_DATA_ABORT;
2732  }
2733 
2734  /* If the DCC is nonempty, clear it. */
2735  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2736  uint32_t dummy;
2737  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2738  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2739  if (final_retval == ERROR_OK)
2740  final_retval = retval;
2741  }
2742  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2743  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2744  if (final_retval == ERROR_OK)
2745  final_retval = retval;
2746  }
2747 
2748  /* Done. */
2749  return final_retval;
2750 }
2751 
2752 
2753 /*
2754  * Cortex-A Memory access
2755  *
2756  * This is same Cortex-M3 but we must also use the correct
2757  * ap number for every access.
2758  */
2759 
2761  target_addr_t address, uint32_t size,
2762  uint32_t count, uint8_t *buffer)
2763 {
2764  int retval;
2765 
2766  if (!count || !buffer)
2768 
2769  LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2770  address, size, count);
2771 
2772  /* read memory through the CPU */
2776 
2777  return retval;
2778 }
2779 
2781  uint32_t size, uint32_t count, uint8_t *buffer)
2782 {
2783  int retval;
2784 
2785  /* cortex_a handles unaligned memory access */
2786  LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2787  address, size, count);
2788 
2792 
2793  return retval;
2794 }
2795 
2797  target_addr_t address, uint32_t size,
2798  uint32_t count, const uint8_t *buffer)
2799 {
2800  int retval;
2801 
2802  if (!count || !buffer)
2804 
2805  LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2806  address, size, count);
2807 
2808  /* write memory through the CPU */
2812 
2813  return retval;
2814 }
2815 
2817  uint32_t size, uint32_t count, const uint8_t *buffer)
2818 {
2819  int retval;
2820 
2821  /* cortex_a handles unaligned memory access */
2822  LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2823  address, size, count);
2824 
2828  return retval;
2829 }
2830 
2832  uint32_t count, uint8_t *buffer)
2833 {
2834  uint32_t size;
2835 
2836  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2837  * will have something to do with the size we leave to it. */
2838  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2839  if (address & size) {
2840  int retval = target_read_memory(target, address, size, 1, buffer);
2841  if (retval != ERROR_OK)
2842  return retval;
2843  address += size;
2844  count -= size;
2845  buffer += size;
2846  }
2847  }
2848 
2849  /* Read the data with as large access size as possible. */
2850  for (; size > 0; size /= 2) {
2851  uint32_t aligned = count - count % size;
2852  if (aligned > 0) {
2853  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2854  if (retval != ERROR_OK)
2855  return retval;
2856  address += aligned;
2857  count -= aligned;
2858  buffer += aligned;
2859  }
2860  }
2861 
2862  return ERROR_OK;
2863 }
2864 
2866  uint32_t count, const uint8_t *buffer)
2867 {
2868  uint32_t size;
2869 
2870  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2871  * will have something to do with the size we leave to it. */
2872  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2873  if (address & size) {
2874  int retval = target_write_memory(target, address, size, 1, buffer);
2875  if (retval != ERROR_OK)
2876  return retval;
2877  address += size;
2878  count -= size;
2879  buffer += size;
2880  }
2881  }
2882 
2883  /* Write the data with as large access size as possible. */
2884  for (; size > 0; size /= 2) {
2885  uint32_t aligned = count - count % size;
2886  if (aligned > 0) {
2887  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2888  if (retval != ERROR_OK)
2889  return retval;
2890  address += aligned;
2891  count -= aligned;
2892  buffer += aligned;
2893  }
2894  }
2895 
2896  return ERROR_OK;
2897 }
2898 
2900 {
2901  struct target *target = priv;
2902  struct armv7a_common *armv7a = target_to_armv7a(target);
2903  int retval;
2904 
2906  return ERROR_OK;
2907  if (!target->dbg_msg_enabled)
2908  return ERROR_OK;
2909 
2910  if (target->state == TARGET_RUNNING) {
2911  uint32_t request;
2912  uint32_t dscr;
2913  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2914  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2915 
2916  /* check if we have data */
2917  int64_t then = timeval_ms();
2918  while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2919  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2920  armv7a->debug_base + CPUDBG_DTRTX, &request);
2921  if (retval == ERROR_OK) {
2922  target_request(target, request);
2923  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2924  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2925  }
2926  if (timeval_ms() > then + 1000) {
2927  LOG_ERROR("Timeout waiting for dtr tx full");
2928  return ERROR_FAIL;
2929  }
2930  }
2931  }
2932 
2933  return ERROR_OK;
2934 }
2935 
2936 /*
2937  * Cortex-A target information and configuration
2938  */
2939 
2941 {
2942  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2943  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2944  struct adiv5_dap *swjdp = armv7a->arm.dap;
2946 
2947  int i;
2948  int retval = ERROR_OK;
2949  uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2950 
2951  if (!armv7a->debug_ap) {
2952  if (pc->ap_num == DP_APSEL_INVALID) {
2953  /* Search for the APB-AP - it is needed for access to debug registers */
2954  retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2955  if (retval != ERROR_OK) {
2956  LOG_ERROR("Could not find APB-AP for debug access");
2957  return retval;
2958  }
2959  } else {
2960  armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2961  if (!armv7a->debug_ap) {
2962  LOG_ERROR("Cannot get AP");
2963  return ERROR_FAIL;
2964  }
2965  }
2966  }
2967 
2968  retval = mem_ap_init(armv7a->debug_ap);
2969  if (retval != ERROR_OK) {
2970  LOG_ERROR("Could not initialize the APB-AP");
2971  return retval;
2972  }
2973 
2974  armv7a->debug_ap->memaccess_tck = 80;
2975 
2976  if (!target->dbgbase_set) {
2977  LOG_TARGET_DEBUG(target, "dbgbase is not set, trying to detect using the ROM table");
2978  /* Lookup Processor DAP */
2980  &armv7a->debug_base, target->coreid);
2981  if (retval != ERROR_OK) {
2982  LOG_TARGET_ERROR(target, "Can't detect dbgbase from the ROM table; you need to specify it explicitly");
2983  return retval;
2984  }
2985  LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2986  target->coreid, armv7a->debug_base);
2987  } else
2988  armv7a->debug_base = target->dbgbase;
2989 
2990  if ((armv7a->debug_base & (1UL<<31)) == 0)
2992  "Debug base address has bit 31 set to 0. Access to debug registers will likely fail!\n"
2993  "Please fix the target configuration");
2994 
2995  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2996  armv7a->debug_base + CPUDBG_DIDR, &didr);
2997  if (retval != ERROR_OK) {
2998  LOG_DEBUG("Examine %s failed", "DIDR");
2999  return retval;
3000  }
3001 
3002  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3003  armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3004  if (retval != ERROR_OK) {
3005  LOG_DEBUG("Examine %s failed", "CPUID");
3006  return retval;
3007  }
3008 
3009  LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3010  LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3011 
3012  cortex_a->didr = didr;
3013  cortex_a->cpuid = cpuid;
3014 
3015  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3016  armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3017  if (retval != ERROR_OK)
3018  return retval;
3019  LOG_TARGET_DEBUG(target, "DBGPRSR 0x%" PRIx32, dbg_osreg);
3020 
3021  if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3022  LOG_TARGET_ERROR(target, "powered down!");
3023  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3024  return ERROR_TARGET_INIT_FAILED;
3025  }
3026 
3027  if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3028  LOG_TARGET_DEBUG(target, "was reset!");
3029 
3030  /* Read DBGOSLSR and check if OSLK is implemented */
3031  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3032  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3033  if (retval != ERROR_OK)
3034  return retval;
3035  LOG_TARGET_DEBUG(target, "DBGOSLSR 0x%" PRIx32, dbg_osreg);
3036 
3037  /* check if OS Lock is implemented */
3038  if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3039  /* check if OS Lock is set */
3040  if (dbg_osreg & OSLSR_OSLK) {
3041  LOG_TARGET_DEBUG(target, "OSLock set! Trying to unlock");
3042 
3043  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3044  armv7a->debug_base + CPUDBG_OSLAR,
3045  0);
3046  if (retval == ERROR_OK)
3047  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3048  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3049 
3050  /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3051  if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3052  LOG_TARGET_ERROR(target, "OSLock sticky, core not powered?");
3053  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3054  return ERROR_TARGET_INIT_FAILED;
3055  }
3056  }
3057  }
3058 
3059  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3060  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
3061  if (retval != ERROR_OK)
3062  return retval;
3063 
3064  if (dbg_idpfr1 & 0x000000f0) {
3065  LOG_TARGET_DEBUG(target, "has security extensions");
3067  }
3068  if (dbg_idpfr1 & 0x0000f000) {
3069  LOG_TARGET_DEBUG(target, "has virtualization extensions");
3070  /*
3071  * overwrite and simplify the checks.
3072  * virtualization extensions require implementation of security extension
3073  */
3075  }
3076 
3077  /* Avoid recreating the registers cache */
3078  if (!target_was_examined(target)) {
3079  retval = cortex_a_dpm_setup(cortex_a, didr);
3080  if (retval != ERROR_OK)
3081  return retval;
3082  }
3083 
3084  /* Setup Breakpoint Register Pairs */
3085  cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3086  cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3087  cortex_a->brp_num_available = cortex_a->brp_num;
3088  free(cortex_a->brp_list);
3089  cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3090 /* cortex_a->brb_enabled = ????; */
3091  for (i = 0; i < cortex_a->brp_num; i++) {
3092  cortex_a->brp_list[i].used = false;
3093  if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3094  cortex_a->brp_list[i].type = BRP_NORMAL;
3095  else
3096  cortex_a->brp_list[i].type = BRP_CONTEXT;
3097  cortex_a->brp_list[i].value = 0;
3098  cortex_a->brp_list[i].control = 0;
3099  cortex_a->brp_list[i].brpn = i;
3100  }
3101 
3102  LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3103 
3104  /* Setup Watchpoint Register Pairs */
3105  cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3106  cortex_a->wrp_num_available = cortex_a->wrp_num;
3107  free(cortex_a->wrp_list);
3108  cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3109  for (i = 0; i < cortex_a->wrp_num; i++) {
3110  cortex_a->wrp_list[i].used = false;
3111  cortex_a->wrp_list[i].value = 0;
3112  cortex_a->wrp_list[i].control = 0;
3113  cortex_a->wrp_list[i].wrpn = i;
3114  }
3115 
3116  LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3117 
3118  /* select debug_ap as default */
3119  swjdp->apsel = armv7a->debug_ap->ap_num;
3120 
3122  return ERROR_OK;
3123 }
3124 
3125 static int cortex_a_examine(struct target *target)
3126 {
3127  int retval = ERROR_OK;
3128 
3129  /* Reestablish communication after target reset */
3130  retval = cortex_a_examine_first(target);
3131 
3132  /* Configure core debug access */
3133  if (retval == ERROR_OK)
3135 
3136  return retval;
3137 }
3138 
3139 /*
3140  * Cortex-A target creation and initialization
3141  */
3142 
3143 static int cortex_a_init_target(struct command_context *cmd_ctx,
3144  struct target *target)
3145 {
3146  /* examine_first() does a bunch of this */
3148  return ERROR_OK;
3149 }
3150 
3152  struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3153 {
3154  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3155 
3156  /* Setup struct cortex_a_common */
3157  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3158  armv7a->arm.dap = dap;
3159 
3160  /* register arch-specific functions */
3161  armv7a->examine_debug_reason = NULL;
3162 
3164 
3165  armv7a->pre_restore_context = NULL;
3166 
3168 
3169 
3170 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3171 
3172  /* REVISIT v7a setup should be in a v7a-specific routine */
3173  armv7a_init_arch_info(target, armv7a);
3176 
3177  return ERROR_OK;
3178 }
3179 
3181 {
3182  struct cortex_a_common *cortex_a;
3183  struct adiv5_private_config *pc;
3184 
3185  if (!target->private_config)
3186  return ERROR_FAIL;
3187 
3188  pc = (struct adiv5_private_config *)target->private_config;
3189 
3190  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3191  if (!cortex_a) {
3192  LOG_ERROR("Out of memory");
3193  return ERROR_FAIL;
3194  }
3195  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3196  cortex_a->armv7a_common.is_armv7r = false;
3198 
3199  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3200 }
3201 
3203 {
3204  struct cortex_a_common *cortex_a;
3205  struct adiv5_private_config *pc;
3206 
3207  pc = (struct adiv5_private_config *)target->private_config;
3208  if (adiv5_verify_config(pc) != ERROR_OK)
3209  return ERROR_FAIL;
3210 
3211  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3212  if (!cortex_a) {
3213  LOG_ERROR("Out of memory");
3214  return ERROR_FAIL;
3215  }
3216  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3217  cortex_a->armv7a_common.is_armv7r = true;
3218 
3219  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3220 }
3221 
3223 {
3224  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3225  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3226  struct arm_dpm *dpm = &armv7a->dpm;
3227  uint32_t dscr;
3228  int retval;
3229 
3230  if (target_was_examined(target)) {
3231  /* Disable halt for breakpoint, watchpoint and vector catch */
3232  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3233  armv7a->debug_base + CPUDBG_DSCR, &dscr);
3234  if (retval == ERROR_OK)
3236  armv7a->debug_base + CPUDBG_DSCR,
3238  }
3239 
3240  if (armv7a->debug_ap)
3241  dap_put_ap(armv7a->debug_ap);
3242 
3243  free(cortex_a->wrp_list);
3244  free(cortex_a->brp_list);
3245  arm_free_reg_cache(dpm->arm);
3246  free(dpm->dbp);
3247  free(dpm->dwp);
3248  free(target->private_config);
3249  free(cortex_a);
3250 }
3251 
3252 static int cortex_a_mmu(struct target *target, bool *enabled)
3253 {
3254  struct armv7a_common *armv7a = target_to_armv7a(target);
3255 
3256  if (target->state != TARGET_HALTED) {
3257  LOG_TARGET_ERROR(target, "not halted");
3258  return ERROR_TARGET_NOT_HALTED;
3259  }
3260 
3261  if (armv7a->is_armv7r)
3262  *enabled = false;
3263  else
3265 
3266  return ERROR_OK;
3267 }
3268 
3269 static int cortex_a_virt2phys(struct target *target,
3270  target_addr_t virt, target_addr_t *phys)
3271 {
3272  int retval;
3273  bool mmu_enabled = false;
3274 
3275  /*
3276  * If the MMU was not enabled at debug entry, there is no
3277  * way of knowing if there was ever a valid configuration
3278  * for it and thus it's not safe to enable it. In this case,
3279  * just return the virtual address as physical.
3280  */
3281  cortex_a_mmu(target, &mmu_enabled);
3282  if (!mmu_enabled) {
3283  *phys = virt;
3284  return ERROR_OK;
3285  }
3286 
3287  /* mmu must be enable in order to get a correct translation */
3288  retval = cortex_a_mmu_modify(target, true);
3289  if (retval != ERROR_OK)
3290  return retval;
3291  return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3292  phys, 1);
3293 }
3294 
3295 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3296 {
3298  struct armv7a_common *armv7a = target_to_armv7a(target);
3299 
3301  &armv7a->armv7a_mmu.armv7a_cache);
3302 }
3303 
3304 
3305 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3306 {
3308  if (!target_was_examined(target)) {
3309  LOG_ERROR("target not examined yet");
3310  return ERROR_FAIL;
3311  }
3312 
3314 }
3315 
3316 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3317 {
3319  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3320 
3321  static const struct nvp nvp_maskisr_modes[] = {
3322  { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3323  { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3324  { .name = NULL, .value = -1 },
3325  };
3326  const struct nvp *n;
3327 
3328  if (CMD_ARGC > 0) {
3329  n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3330  if (!n->name) {
3331  LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3333  }
3334 
3335  cortex_a->isrmasking_mode = n->value;
3336  }
3337 
3338  n = nvp_value2name(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3339  command_print(CMD, "cortex_a interrupt mask %s", n->name);
3340 
3341  return ERROR_OK;
3342 }
3343 
3344 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3345 {
3347  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3348 
3349  static const struct nvp nvp_dacrfixup_modes[] = {
3350  { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3351  { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3352  { .name = NULL, .value = -1 },
3353  };
3354  const struct nvp *n;
3355 
3356  if (CMD_ARGC > 0) {
3357  n = nvp_name2value(nvp_dacrfixup_modes, CMD_ARGV[0]);
3358  if (!n->name)
3360  cortex_a->dacrfixup_mode = n->value;
3361 
3362  }
3363 
3364  n = nvp_value2name(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3365  command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3366 
3367  return ERROR_OK;
3368 }
3369 
3370 static const struct command_registration cortex_a_exec_command_handlers[] = {
3371  {
3372  .name = "cache_info",
3373  .handler = cortex_a_handle_cache_info_command,
3374  .mode = COMMAND_EXEC,
3375  .help = "display information about target caches",
3376  .usage = "",
3377  },
3378  {
3379  .name = "dbginit",
3380  .handler = cortex_a_handle_dbginit_command,
3381  .mode = COMMAND_EXEC,
3382  .help = "Initialize core debug",
3383  .usage = "",
3384  },
3385  {
3386  .name = "maskisr",
3387  .handler = handle_cortex_a_mask_interrupts_command,
3388  .mode = COMMAND_ANY,
3389  .help = "mask cortex_a interrupts",
3390  .usage = "['on'|'off']",
3391  },
3392  {
3393  .name = "dacrfixup",
3394  .handler = handle_cortex_a_dacrfixup_command,
3395  .mode = COMMAND_ANY,
3396  .help = "set domain access control (DACR) to all-manager "
3397  "on memory access",
3398  .usage = "['on'|'off']",
3399  },
3400  {
3401  .chain = armv7a_mmu_command_handlers,
3402  },
3403  {
3405  },
3406 
3408 };
3409 static const struct command_registration cortex_a_command_handlers[] = {
3410  {
3412  },
3413  {
3415  },
3416  {
3417  .name = "cortex_a",
3418  .mode = COMMAND_ANY,
3419  .help = "Cortex-A command group",
3420  .usage = "",
3422  },
3424 };
3425 
3426 struct target_type cortexa_target = {
3427  .name = "cortex_a",
3428 
3429  .poll = cortex_a_poll,
3430  .arch_state = armv7a_arch_state,
3431 
3432  .halt = cortex_a_halt,
3433  .resume = cortex_a_resume,
3434  .step = cortex_a_step,
3435 
3436  .assert_reset = cortex_a_assert_reset,
3437  .deassert_reset = cortex_a_deassert_reset,
3438 
3439  /* REVISIT allow exporting VFP3 registers ... */
3440  .get_gdb_arch = arm_get_gdb_arch,
3441  .get_gdb_reg_list = arm_get_gdb_reg_list,
3442 
3443  .read_memory = cortex_a_read_memory,
3444  .write_memory = cortex_a_write_memory,
3445 
3446  .read_buffer = cortex_a_read_buffer,
3447  .write_buffer = cortex_a_write_buffer,
3448 
3449  .checksum_memory = arm_checksum_memory,
3450  .blank_check_memory = arm_blank_check_memory,
3451 
3452  .run_algorithm = armv4_5_run_algorithm,
3453 
3454  .add_breakpoint = cortex_a_add_breakpoint,
3455  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3456  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3457  .remove_breakpoint = cortex_a_remove_breakpoint,
3458  .add_watchpoint = cortex_a_add_watchpoint,
3459  .remove_watchpoint = cortex_a_remove_watchpoint,
3460 
3461  .commands = cortex_a_command_handlers,
3462  .target_create = cortex_a_target_create,
3463  .target_jim_configure = adiv5_jim_configure,
3464  .init_target = cortex_a_init_target,
3465  .examine = cortex_a_examine,
3466  .deinit_target = cortex_a_deinit_target,
3467 
3468  .read_phys_memory = cortex_a_read_phys_memory,
3469  .write_phys_memory = cortex_a_write_phys_memory,
3470  .mmu = cortex_a_mmu,
3471  .virt2phys = cortex_a_virt2phys,
3472 };
3473 
3474 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3475  {
3476  .name = "dbginit",
3477  .handler = cortex_a_handle_dbginit_command,
3478  .mode = COMMAND_EXEC,
3479  .help = "Initialize core debug",
3480  .usage = "",
3481  },
3482  {
3483  .name = "maskisr",
3484  .handler = handle_cortex_a_mask_interrupts_command,
3485  .mode = COMMAND_EXEC,
3486  .help = "mask cortex_r4 interrupts",
3487  .usage = "['on'|'off']",
3488  },
3489 
3491 };
3492 static const struct command_registration cortex_r4_command_handlers[] = {
3493  {
3495  },
3496  {
3497  .name = "cortex_r4",
3498  .mode = COMMAND_ANY,
3499  .help = "Cortex-R4 command group",
3500  .usage = "",
3502  },
3504 };
3505 
3506 struct target_type cortexr4_target = {
3507  .name = "cortex_r4",
3508 
3509  .poll = cortex_a_poll,
3510  .arch_state = armv7a_arch_state,
3511 
3512  .halt = cortex_a_halt,
3513  .resume = cortex_a_resume,
3514  .step = cortex_a_step,
3515 
3516  .assert_reset = cortex_a_assert_reset,
3517  .deassert_reset = cortex_a_deassert_reset,
3518 
3519  /* REVISIT allow exporting VFP3 registers ... */
3520  .get_gdb_arch = arm_get_gdb_arch,
3521  .get_gdb_reg_list = arm_get_gdb_reg_list,
3522 
3523  .read_memory = cortex_a_read_phys_memory,
3524  .write_memory = cortex_a_write_phys_memory,
3525 
3526  .checksum_memory = arm_checksum_memory,
3527  .blank_check_memory = arm_blank_check_memory,
3528 
3529  .run_algorithm = armv4_5_run_algorithm,
3530 
3531  .add_breakpoint = cortex_a_add_breakpoint,
3532  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3533  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3534  .remove_breakpoint = cortex_a_remove_breakpoint,
3535  .add_watchpoint = cortex_a_add_watchpoint,
3536  .remove_watchpoint = cortex_a_remove_watchpoint,
3537 
3538  .commands = cortex_r4_command_handlers,
3539  .target_create = cortex_r4_target_create,
3540  .target_jim_configure = adiv5_jim_configure,
3541  .init_target = cortex_a_init_target,
3542  .examine = cortex_a_examine,
3543  .deinit_target = cortex_a_deinit_target,
3544 };
#define BRP_CONTEXT
Definition: aarch64.h:23
#define CPUDBG_CPUID
Definition: aarch64.h:14
#define BRP_NORMAL
Definition: aarch64.h:22
#define CPUDBG_LOCKACCESS
Definition: aarch64.h:19
int arm_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Runs ARM code in the target to check whether a memory block holds all ones.
Definition: armv4_5.c:1686
struct reg * arm_reg_current(struct arm *arm, unsigned int regnum)
Returns handle to the register currently mapped to a given number.
Definition: armv4_5.c:516
@ ARM_VFP_V3
Definition: arm.h:163
int arm_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
Runs ARM code in the target to calculate a CRC32 checksum.
Definition: armv4_5.c:1613
const char * arm_get_gdb_arch(const struct target *target)
Definition: armv4_5.c:1281
int arm_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Definition: armv4_5.c:1286
@ ARM_MODE_ANY
Definition: arm.h:106
@ ARM_MODE_SVC
Definition: arm.h:86
void arm_free_reg_cache(struct arm *arm)
Definition: armv4_5.c:775
@ ARM_STATE_JAZELLE
Definition: arm.h:153
@ ARM_STATE_THUMB
Definition: arm.h:152
@ ARM_STATE_ARM
Definition: arm.h:151
@ ARM_STATE_AARCH64
Definition: arm.h:155
@ ARM_STATE_THUMB_EE
Definition: arm.h:154
const struct command_registration arm_command_handlers[]
Definition: armv4_5.c:1261
int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Definition: armv4_5.c:1587
@ ARM_CORE_TYPE_SEC_EXT
Definition: arm.h:47
@ ARM_CORE_TYPE_VIRT_EXT
Definition: arm.h:48
int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type, target_addr_t *addr, int32_t core_id)
Definition: arm_adi_v5.c:2295
int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:742
int adiv5_verify_config(struct adiv5_private_config *pc)
Definition: arm_adi_v5.c:2494
int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Asynchronous (queued) write of a word to memory or a system register.
Definition: arm_adi_v5.c:297
int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
Definition: arm_adi_v5.c:2489
int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
Definition: arm_adi_v5.c:1115
int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:748
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Synchronous read of a word from memory or a system register.
Definition: arm_adi_v5.c:274
struct adiv5_ap * dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1197
int dap_put_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1217
int mem_ap_init(struct adiv5_ap *ap)
Initialize a DAP.
Definition: arm_adi_v5.c:896
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Synchronous write of a word to memory or a system register.
Definition: arm_adi_v5.c:326
@ AP_TYPE_APB_AP
Definition: arm_adi_v5.h:491
#define DP_APSEL_INVALID
Definition: arm_adi_v5.h:110
static int dap_run(struct adiv5_dap *dap)
Perform all queued DAP operations, and clear any errors posted in the CTRL_STAT register when they ar...
Definition: arm_adi_v5.h:648
#define ARM_CS_C9_DEVTYPE_CORE_DEBUG
Definition: arm_coresight.h:88
void arm_dpm_report_dscr(struct arm_dpm *dpm, uint32_t dscr)
Definition: arm_dpm.c:1056
int arm_dpm_read_current_registers(struct arm_dpm *dpm)
Read basic registers of the current context: R0 to R15, and CPSR; sets the core mode (such as USR or ...
Definition: arm_dpm.c:379
int arm_dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
Definition: arm_dpm.c:144
int arm_dpm_setup(struct arm_dpm *dpm)
Hooks up this DPM to its associated target; call only once.
Definition: arm_dpm.c:1094
int arm_dpm_read_reg(struct arm_dpm *dpm, struct reg *r, unsigned int regnum)
Definition: arm_dpm.c:207
int arm_dpm_write_dirty_registers(struct arm_dpm *dpm, bool bpwp)
Writes all modified core registers for all processor modes.
Definition: arm_dpm.c:486
void arm_dpm_report_wfar(struct arm_dpm *dpm, uint32_t addr)
Definition: arm_dpm.c:1032
int arm_dpm_initialize(struct arm_dpm *dpm)
Reinitializes DPM state at the beginning of a new debug session or after a reset which may have affec...
Definition: arm_dpm.c:1161
#define OSLSR_OSLM
Definition: arm_dpm.h:248
#define DRCR_HALT
Definition: arm_dpm.h:223
#define DSCR_INSTR_COMP
Definition: arm_dpm.h:190
#define DRCR_CLEAR_EXCEPTIONS
Definition: arm_dpm.h:225
#define DSCR_INT_DIS
Definition: arm_dpm.h:180
#define OSLSR_OSLM0
Definition: arm_dpm.h:244
#define DSCR_STICKY_ABORT_IMPRECISE
Definition: arm_dpm.h:176
#define DSCR_EXT_DCC_FAST_MODE
Definition: arm_dpm.h:216
#define OSLSR_OSLK
Definition: arm_dpm.h:245
#define DSCR_DTR_TX_FULL
Definition: arm_dpm.h:194
#define DSCR_DTRRX_FULL_LATCHED
Definition: arm_dpm.h:193
#define DRCR_RESTART
Definition: arm_dpm.h:224
#define DSCR_RUN_MODE(dscr)
Definition: arm_dpm.h:198
#define DSCR_STICKY_ABORT_PRECISE
Definition: arm_dpm.h:175
#define OSLSR_OSLM1
Definition: arm_dpm.h:247
#define DSCR_CORE_HALTED
Definition: arm_dpm.h:172
#define DSCR_ITR_EN
Definition: arm_dpm.h:182
#define DSCR_EXT_DCC_NON_BLOCKING
Definition: arm_dpm.h:214
#define PRSR_STICKY_RESET_STATUS
Definition: arm_dpm.h:238
#define PRSR_POWERUP_STATUS
Definition: arm_dpm.h:235
#define DSCR_EXT_DCC_MASK
Definition: arm_dpm.h:189
#define DSCR_DTR_RX_FULL
Definition: arm_dpm.h:195
#define DSCR_CORE_RESTARTED
Definition: arm_dpm.h:173
#define DSCR_HALT_DBG_MODE
Definition: arm_dpm.h:183
#define DSCR_DTRTX_FULL_LATCHED
Definition: arm_dpm.h:192
Macros used to generate various ARM or Thumb opcodes.
#define ARMV5_BKPT(im)
Definition: arm_opcodes.h:227
#define ARMV4_5_STC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:159
#define ARMV5_T_BKPT(im)
Definition: arm_opcodes.h:313
#define ARMV4_5_LDC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:174
#define ARMV4_5_MRC(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:186
#define ARMV4_5_STRH_IP(rd, rn)
Definition: arm_opcodes.h:105
#define ARMV4_5_MCR(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:209
#define ARMV4_5_LDRH_IP(rd, rn)
Definition: arm_opcodes.h:87
#define ARMV4_5_LDRB_IP(rd, rn)
Definition: arm_opcodes.h:93
#define ARMV4_5_LDRW_IP(rd, rn)
Definition: arm_opcodes.h:81
#define ARMV4_5_STRW_IP(rd, rn)
Definition: arm_opcodes.h:99
#define ARMV4_5_STRB_IP(rd, rn)
Definition: arm_opcodes.h:111
int arm_semihosting(struct target *target, int *retval)
Checks for and processes an ARM semihosting request.
int arm_semihosting_init(struct target *target)
Initialize ARM semihosting support.
enum arm_mode mode
Definition: armv4_5.c:281
int armv7a_handle_cache_info_command(struct command_invocation *cmd, struct armv7a_cache_common *armv7a_cache)
Definition: armv7a.c:183
int armv7a_read_ttbcr(struct target *target)
Definition: armv7a.c:119
int armv7a_arch_state(struct target *target)
Definition: armv7a.c:482
const struct command_registration armv7a_command_handlers[]
Definition: armv7a.c:511
int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a)
Definition: armv7a.c:466
int armv7a_identify_cache(struct target *target)
Definition: armv7a.c:315
#define CPUDBG_DSMCR
Definition: armv7a.h:164
#define CPUDBG_DSCCR
Definition: armv7a.h:163
#define CPUDBG_OSLAR
Definition: armv7a.h:157
#define CPUDBG_BCR_BASE
Definition: armv7a.h:151
#define CPUDBG_OSLSR
Definition: armv7a.h:158
#define CPUDBG_DSCR
Definition: armv7a.h:139
#define CPUDBG_DRCR
Definition: armv7a.h:140
#define CPUDBG_DIDR
Definition: armv7a.h:134
#define CPUDBG_WCR_BASE
Definition: armv7a.h:153
#define CPUDBG_DTRTX
Definition: armv7a.h:147
static struct armv7a_common * target_to_armv7a(struct target *target)
Definition: armv7a.h:120
#define CPUDBG_WVR_BASE
Definition: armv7a.h:152
#define CPUDBG_WFAR
Definition: armv7a.h:137
#define CPUDBG_BVR_BASE
Definition: armv7a.h:150
#define CPUDBG_DTRRX
Definition: armv7a.h:145
#define CPUDBG_PRSR
Definition: armv7a.h:142
#define CPUDBG_ITR
Definition: armv7a.h:146
#define CPUDBG_ID_PFR1
Definition: armv7a.h:170
int armv7a_l1_i_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:329
int armv7a_cache_flush_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:376
int armv7a_l1_d_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:146
const struct command_registration armv7a_mmu_command_handlers[]
Definition: armv7a_mmu.c:359
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va, target_addr_t *val, int meminfo)
Definition: armv7a_mmu.c:27
@ ARMV7M_PRIMASK
Definition: armv7m.h:145
@ ARMV7M_XPSR
Definition: armv7m.h:128
static uint32_t buf_get_u32(const uint8_t *_buffer, unsigned int first, unsigned int num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 32-bit word.
Definition: binarybuffer.h:104
static void buf_set_u32(uint8_t *_buffer, unsigned int first, unsigned int num, uint32_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:34
struct breakpoint * breakpoint_find(struct target *target, target_addr_t address)
Definition: breakpoints.c:489
@ BKPT_HARD
Definition: breakpoints.h:18
@ BKPT_SOFT
Definition: breakpoints.h:19
static void watchpoint_set(struct watchpoint *watchpoint, unsigned int number)
Definition: breakpoints.h:83
static void breakpoint_hw_set(struct breakpoint *breakpoint, unsigned int hw_number)
Definition: breakpoints.h:66
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:375
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:400
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:146
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:251
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
static int cortex_a_dpm_finish(struct arm_dpm *dpm)
Definition: cortex_a.c:397
static int cortex_a_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2760
static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
Definition: cortex_a.c:369
static int cortex_a_exec_opcode(struct target *target, uint32_t opcode, uint32_t *dscr_p)
Definition: cortex_a.c:283
static const struct command_registration cortex_a_command_handlers[]
Definition: cortex_a.c:3409
static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
Definition: cortex_a.c:333
static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar, uint32_t dfsr, uint32_t *dscr)
Definition: cortex_a.c:2145
static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
Definition: cortex_a.c:633
static int cortex_a_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2865
static int cortex_a_restore_smp(struct target *target, bool handle_breakpoints)
Definition: cortex_a.c:968
static int cortex_a_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2831
static int cortex_a_init_debug_access(struct target *target)
Definition: cortex_a.c:208
static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Remove a watchpoint from an Cortex-A target.
Definition: cortex_a.c:1918
static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
Definition: cortex_a.c:483
static const struct command_registration cortex_r4_exec_command_handlers[]
Definition: cortex_a.c:3474
static const struct command_registration cortex_a_exec_command_handlers[]
Definition: cortex_a.c:3370
static int cortex_a_read_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2446
static int cortex_a_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2780
static int cortex_a_read_copro(struct target *target, uint32_t opcode, uint32_t *data, uint32_t *dscr)
Definition: cortex_a.c:2058
static int cortex_a_instr_read_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Definition: cortex_a.c:551
static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:494
static int cortex_a_restore_context(struct target *target, bool bpwp)
Definition: cortex_a.c:1302
static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1714
static int cortex_a_step(struct target *target, bool current, target_addr_t address, bool handle_breakpoints)
Definition: cortex_a.c:1194
static int cortex_a_handle_target_request(void *priv)
Definition: cortex_a.c:2899
static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Add a watchpoint to an Cortex-A target.
Definition: cortex_a.c:1893
static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
Sets a watchpoint for an Cortex-A target in one of the watchpoint units.
Definition: cortex_a.c:1746
static int cortex_a_init_arch_info(struct target *target, struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
Definition: cortex_a.c:3151
static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:441
static int cortex_a_post_debug_entry(struct target *target)
Definition: cortex_a.c:1102
struct target_type cortexr4_target
Definition: cortex_a.c:3506
static int update_halt_gdb(struct target *target)
Definition: cortex_a.c:689
static int cortex_a_read_cpu_memory_fast(struct target *target, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2523
static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1470
static int cortex_r4_target_create(struct target *target)
Definition: cortex_a.c:3202
static int cortex_a_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1697
static int cortex_a_examine(struct target *target)
Definition: cortex_a.c:3125
static int cortex_a_write_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2188
static int cortex_a_halt_smp(struct target *target)
Definition: cortex_a.c:675
static int cortex_a_mmu_modify(struct target *target, bool enable)
Definition: cortex_a.c:168
static int cortex_a_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1681
static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1551
static int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
Definition: cortex_a.c:1148
static int cortex_a_deassert_reset(struct target *target)
Definition: cortex_a.c:1974
static int cortex_a_target_create(struct target *target)
Definition: cortex_a.c:3180
static int cortex_a_write_copro(struct target *target, uint32_t opcode, uint32_t data, uint32_t *dscr)
Definition: cortex_a.c:2112
static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar, uint32_t *dfsr, uint32_t *dscr)
Definition: cortex_a.c:2092
static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
Unset an existing watchpoint and clear the used watchpoint unit.
Definition: cortex_a.c:1848
static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
Definition: cortex_a.c:2007
static int cortex_a_prep_memaccess(struct target *target, bool phys_access)
Definition: cortex_a.c:112
static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t, uint32_t addr, uint32_t control)
Definition: cortex_a.c:574
static int cortex_a_internal_restore(struct target *target, bool current, target_addr_t *address, bool handle_breakpoints, bool debug_execution)
Definition: cortex_a.c:820
static int cortex_a_virt2phys(struct target *target, target_addr_t virt, target_addr_t *phys)
Definition: cortex_a.c:3269
static int cortex_a_examine_first(struct target *target)
Definition: cortex_a.c:2940
static int cortex_a_mmu(struct target *target, bool *enabled)
Definition: cortex_a.c:3252
static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:532
static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
Definition: cortex_a.c:255
static int cortex_a_init_target(struct command_context *cmd_ctx, struct target *target)
Definition: cortex_a.c:3143
static int cortex_a_poll(struct target *target)
Definition: cortex_a.c:735
static void cortex_a_deinit_target(struct target *target)
Definition: cortex_a.c:3222
static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
Definition: cortex_a.c:609
static int cortex_a_restore_cp15_control_reg(struct target *target)
Definition: cortex_a.c:90
static const struct command_registration cortex_r4_command_handlers[]
Definition: cortex_a.c:3492
static int cortex_a_write_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2293
COMMAND_HANDLER(cortex_a_handle_cache_info_command)
Definition: cortex_a.c:3295
static int cortex_a_set_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1319
static int cortex_a_halt(struct target *target)
Definition: cortex_a.c:792
static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:403
static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data, uint32_t *dscr_p)
Definition: cortex_a.c:340
static int cortex_a_write_cpu_memory_fast(struct target *target, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2264
static int cortex_a_set_context_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1421
static int cortex_a_read_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2610
static int cortex_a_post_memaccess(struct target *target, bool phys_access)
Definition: cortex_a.c:142
static int cortex_a_internal_restart(struct target *target)
Definition: cortex_a.c:918
static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
Definition: cortex_a.c:2161
static int cortex_a_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1665
static int cortex_a_instr_write_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Definition: cortex_a.c:461
static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t data)
Definition: cortex_a.c:420
static int cortex_a_debug_entry(struct target *target)
Definition: cortex_a.c:1023
static int cortex_a_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2816
static int cortex_a_resume(struct target *target, bool current, target_addr_t address, bool handle_breakpoints, bool debug_execution)
Definition: cortex_a.c:987
static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t *data)
Definition: cortex_a.c:512
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask, uint32_t value, uint32_t *dscr)
Definition: cortex_a.c:2029
static struct cortex_a_common * dpm_to_a(struct arm_dpm *dpm)
Definition: cortex_a.c:328
static int cortex_a_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2796
static int cortex_a_assert_reset(struct target *target)
Definition: cortex_a.c:1934
struct target_type cortexa_target
Definition: cortex_a.c:3426
static struct target * get_cortex_a(struct target *target, int32_t coreid)
Definition: cortex_a.c:662
static unsigned int ilog2(unsigned int x)
Definition: cortex_a.c:78
static struct cortex_a_common * target_to_cortex_a(struct target *target)
Definition: cortex_a.h:107
#define CPUDBG_CPUID_CORTEX_R5
Definition: cortex_a.h:35
@ CORTEX_A_ISRMASK_OFF
Definition: cortex_a.h:48
@ CORTEX_A_ISRMASK_ON
Definition: cortex_a.h:49
@ CORTEX_A_DACRFIXUP_ON
Definition: cortex_a.h:54
@ CORTEX_A_DACRFIXUP_OFF
Definition: cortex_a.h:53
#define CPUDBG_CPUID_MASK
Definition: cortex_a.h:33
#define CPUDBG_CPUID_CORTEX_R4
Definition: cortex_a.h:34
#define CORTEX_A_COMMON_MAGIC
Definition: cortex_a.h:22
uint64_t buffer
Pointer to data buffer to send over SPI.
Definition: dw-spi-helper.h:0
uint32_t size
Size of dw_spi_transaction::buffer.
Definition: dw-spi-helper.h:4
uint32_t address
Starting address. Sector aligned.
Definition: dw-spi-helper.h:0
int mask
Definition: esirisc.c:1740
uint8_t type
Definition: esp_usb_jtag.c:0
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
bool transport_is_jtag(void)
Returns true if the current debug session is using JTAG as its transport.
Definition: jtag/core.c:1840
int adapter_deassert_reset(void)
Definition: jtag/core.c:1912
enum reset_types jtag_get_reset_config(void)
Definition: jtag/core.c:1747
int adapter_assert_reset(void)
Definition: jtag/core.c:1892
@ RESET_SRST_NO_GATING
Definition: jtag.h:224
@ RESET_HAS_SRST
Definition: jtag.h:218
#define LOG_TARGET_WARNING(target, fmt_str,...)
Definition: log.h:159
#define LOG_WARNING(expr ...)
Definition: log.h:130
#define ERROR_FAIL
Definition: log.h:174
#define LOG_TARGET_ERROR(target, fmt_str,...)
Definition: log.h:162
#define LOG_TARGET_DEBUG(target, fmt_str,...)
Definition: log.h:150
#define LOG_ERROR(expr ...)
Definition: log.h:133
#define LOG_INFO(expr ...)
Definition: log.h:127
#define LOG_DEBUG(expr ...)
Definition: log.h:110
#define ERROR_OK
Definition: log.h:168
const struct nvp * nvp_name2value(const struct nvp *p, const char *name)
Definition: nvp.c:29
const struct nvp * nvp_value2name(const struct nvp *p, int value)
Definition: nvp.c:39
void register_cache_invalidate(struct reg_cache *cache)
Marks the contents of the register cache as invalid (and clean).
Definition: register.c:94
target_addr_t addr
Start address to search for the control block.
Definition: rtt/rtt.c:28
struct target * target
Definition: rtt/rtt.c:26
const struct command_registration smp_command_handlers[]
Definition: smp.c:153
#define foreach_smp_target(pos, head)
Definition: smp.h:15
#define BIT(nr)
Definition: stm32l4x.h:18
uint64_t ap_num
ADIv5: Number of this AP (0~255) ADIv6: Base address of this AP (4k aligned) TODO: to be more coheren...
Definition: arm_adi_v5.h:261
struct adiv5_dap * dap
DAP this AP belongs to.
Definition: arm_adi_v5.h:254
uint32_t memaccess_tck
Configures how many extra tck clocks are added after starting a MEM-AP access before we try to read i...
Definition: arm_adi_v5.h:306
This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
Definition: arm_adi_v5.h:348
uint64_t apsel
Definition: arm_adi_v5.h:367
struct adiv5_dap * dap
Definition: arm_adi_v5.h:787
This wraps an implementation of DPM primitives.
Definition: arm_dpm.h:47
int(* instr_read_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from dcc after execution.
Definition: arm_dpm.h:91
uint64_t didr
Cache of DIDR.
Definition: arm_dpm.h:51
int(* instr_write_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to R0 before execution.
Definition: arm_dpm.h:72
struct arm * arm
Definition: arm_dpm.h:48
int(* bpwp_enable)(struct arm_dpm *dpm, unsigned int index_value, uint32_t addr, uint32_t control)
Enables one breakpoint or watchpoint by writing to the hardware registers.
Definition: arm_dpm.h:122
int(* finish)(struct arm_dpm *dpm)
Invoke after a series of instruction operations.
Definition: arm_dpm.h:57
struct dpm_bp * dbp
Definition: arm_dpm.h:139
int(* instr_write_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to DCC before execution.
Definition: arm_dpm.h:65
int(* prepare)(struct arm_dpm *dpm)
Invoke before a series of instruction operations.
Definition: arm_dpm.h:54
int(* instr_read_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from r0 after execution.
Definition: arm_dpm.h:98
int(* instr_read_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Runs two instructions, reading data from r0 and r1 after execution.
Definition: arm_dpm.h:105
struct dpm_wp * dwp
Definition: arm_dpm.h:140
int(* bpwp_disable)(struct arm_dpm *dpm, unsigned int index_value)
Disables one breakpoint or watchpoint by clearing its hardware control registers.
Definition: arm_dpm.h:130
int(* instr_cpsr_sync)(struct arm_dpm *dpm)
Optional core-specific operation invoked after CPSR writes.
Definition: arm_dpm.h:86
int(* instr_write_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Runs two instructions, writing data to R0 and R1 before execution.
Definition: arm_dpm.h:78
uint32_t dscr
Recent value of DSCR.
Definition: arm_dpm.h:150
Represents a generic ARM core, with standard application registers.
Definition: arm.h:175
enum arm_core_type core_type
Indicates what registers are in the ARM state core register set.
Definition: arm.h:193
int(* mrc)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t *value)
Read coprocessor register.
Definition: arm.h:230
enum arm_mode core_mode
Record the current core mode: SVC, USR, or some other mode.
Definition: arm.h:196
struct adiv5_dap * dap
For targets conforming to ARM Debug Interface v5, this handle references the Debug Access Port (DAP) ...
Definition: arm.h:257
struct reg * pc
Handle to the PC; valid in all core modes.
Definition: arm.h:181
struct reg_cache * core_cache
Definition: arm.h:178
int(* mcr)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t value)
Write coprocessor register.
Definition: arm.h:241
struct reg * spsr
Handle to the SPSR; valid only in core modes with an SPSR.
Definition: arm.h:187
int arm_vfp_version
Floating point or VFP version, 0 if disabled.
Definition: arm.h:205
struct target * target
Backpointer to the target.
Definition: arm.h:210
enum arm_state core_state
Record the current core state: ARM, Thumb, or otherwise.
Definition: arm.h:199
bool i_cache_enabled
Definition: armv7a.h:66
bool d_u_cache_enabled
Definition: armv7a.h:67
bool is_armv7r
Definition: armv7a.h:103
int(* post_debug_entry)(struct target *target)
Definition: armv7a.h:114
int(* examine_debug_reason)(struct target *target)
Definition: armv7a.h:113
target_addr_t debug_base
Definition: armv7a.h:95
struct arm arm
Definition: armv7a.h:90
struct armv7a_mmu_common armv7a_mmu
Definition: armv7a.h:111
struct arm_dpm dpm
Definition: armv7a.h:94
struct adiv5_ap * debug_ap
Definition: armv7a.h:96
void(* pre_restore_context)(struct target *target)
Definition: armv7a.h:116
struct armv7a_cache_common armv7a_cache
Definition: armv7a.h:83
bool mmu_enabled
Definition: armv7a.h:84
int(* read_physical_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: armv7a.h:81
int linked_brp
Definition: breakpoints.h:36
unsigned int length
Definition: breakpoints.h:29
uint8_t * orig_instr
Definition: breakpoints.h:33
enum breakpoint_type type
Definition: breakpoints.h:30
bool is_set
Definition: breakpoints.h:31
unsigned int number
Definition: breakpoints.h:32
uint32_t asid
Definition: breakpoints.h:28
target_addr_t address
Definition: breakpoints.h:27
const char * name
Definition: command.h:234
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:247
uint32_t value
Definition: cortex_a.h:60
uint32_t control
Definition: cortex_a.h:61
bool used
Definition: cortex_a.h:58
uint8_t brpn
Definition: cortex_a.h:62
struct armv7a_common armv7a_common
Definition: cortex_a.h:75
struct cortex_a_wrp * wrp_list
Definition: cortex_a.h:97
uint32_t didr
Definition: cortex_a.h:100
int brp_num_context
Definition: cortex_a.h:91
struct cortex_a_brp * brp_list
Definition: cortex_a.h:94
uint32_t cp15_control_reg_curr
Definition: cortex_a.h:83
enum cortex_a_dacrfixup_mode dacrfixup_mode
Definition: cortex_a.h:103
int wrp_num_available
Definition: cortex_a.h:96
uint32_t cpudbg_dscr
Definition: cortex_a.h:78
uint32_t cp15_dacr_reg
Definition: cortex_a.h:87
unsigned int common_magic
Definition: cortex_a.h:73
enum cortex_a_isrmasking_mode isrmasking_mode
Definition: cortex_a.h:102
uint32_t cpuid
Definition: cortex_a.h:99
enum arm_mode curr_mode
Definition: cortex_a.h:88
uint32_t cp15_control_reg
Definition: cortex_a.h:81
int brp_num_available
Definition: cortex_a.h:93
uint8_t wrpn
Definition: cortex_a.h:69
bool used
Definition: cortex_a.h:66
uint32_t value
Definition: cortex_a.h:67
uint32_t control
Definition: cortex_a.h:68
int32_t core[2]
Definition: target.h:103
struct target * target
Definition: target.h:98
Name Value Pairs, aka: NVP.
Definition: nvp.h:61
int value
Definition: nvp.h:63
const char * name
Definition: nvp.h:62
Definition: register.h:111
bool valid
Definition: register.h:126
uint8_t * value
Definition: register.h:122
bool dirty
Definition: register.h:124
struct target * target
Definition: target.h:217
This holds methods shared between all instances of a given target type.
Definition: target_type.h:26
const char * name
Name of this type of target.
Definition: target_type.h:31
Definition: target.h:119
int32_t coreid
Definition: target.h:123
struct gdb_service * gdb_service
Definition: target.h:202
bool dbgbase_set
Definition: target.h:177
bool dbg_msg_enabled
Definition: target.h:166
enum target_debug_reason debug_reason
Definition: target.h:157
enum target_state state
Definition: target.h:160
uint32_t dbgbase
Definition: target.h:178
void * private_config
Definition: target.h:168
enum target_endianness endianness
Definition: target.h:158
struct list_head * smp_targets
Definition: target.h:191
unsigned int smp
Definition: target.h:190
bool reset_halt
Definition: target.h:147
bool is_set
Definition: breakpoints.h:47
unsigned int length
Definition: breakpoints.h:43
unsigned int number
Definition: breakpoints.h:48
target_addr_t address
Definition: breakpoints.h:42
int target_call_event_callbacks(struct target *target, enum target_event event)
Definition: target.c:1774
void target_free_all_working_areas(struct target *target)
Definition: target.c:2160
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
Definition: target.c:379
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:361
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1275
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
Definition: target.c:1668
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
Definition: target.c:343
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1247
bool target_has_event_action(const struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
Definition: target.c:4828
struct target * get_current_target(struct command_context *cmd_ctx)
Definition: target.c:467
void target_handle_event(struct target *target, enum target_event e)
Definition: target.c:4664
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
Definition: target.c:325
@ DBG_REASON_NOTHALTED
Definition: target.h:77
@ DBG_REASON_DBGRQ
Definition: target.h:72
@ DBG_REASON_SINGLESTEP
Definition: target.h:76
@ DBG_REASON_WATCHPOINT
Definition: target.h:74
@ DBG_REASON_BREAKPOINT
Definition: target.h:73
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:786
#define ERROR_TARGET_INIT_FAILED
Definition: target.h:784
static bool target_was_examined(const struct target *target)
Definition: target.h:432
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:788
#define ERROR_TARGET_INVALID
Definition: target.h:783
@ TARGET_TIMER_TYPE_PERIODIC
Definition: target.h:323
@ TARGET_EVENT_DEBUG_RESUMED
Definition: target.h:275
@ TARGET_EVENT_HALTED
Definition: target.h:255
@ TARGET_EVENT_RESUMED
Definition: target.h:256
@ TARGET_EVENT_DEBUG_HALTED
Definition: target.h:274
@ TARGET_EVENT_RESET_ASSERT
Definition: target.h:267
static const char * target_name(const struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:236
target_state
Definition: target.h:55
@ TARGET_RESET
Definition: target.h:59
@ TARGET_DEBUG_RUNNING
Definition: target.h:60
@ TARGET_UNKNOWN
Definition: target.h:56
@ TARGET_HALTED
Definition: target.h:58
@ TARGET_RUNNING
Definition: target.h:57
@ TARGET_BIG_ENDIAN
Definition: target.h:85
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:790
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:439
#define ERROR_TARGET_DATA_ABORT
Definition: target.h:789
#define ERROR_TARGET_TRANSLATION_FAULT
Definition: target.h:791
int target_request(struct target *target, uint32_t request)
int64_t timeval_ms(void)
#define TARGET_ADDR_FMT
Definition: types.h:342
uint64_t target_addr_t
Definition: types.h:335
#define container_of(ptr, type, member)
Cast a member of a structure out to the containing structure.
Definition: types.h:68
static void buf_bswap32(uint8_t *dst, const uint8_t *src, size_t len)
Byte-swap buffer 32-bit.
Definition: types.h:249
#define NULL
Definition: usb.h:16
uint8_t status[4]
Definition: vdebug.c:17
uint8_t dummy[96]
Definition: vdebug.c:23
uint8_t count[4]
Definition: vdebug.c:22